• Title/Summary/Keyword: contact forces

Search Result 612, Processing Time 0.027 seconds

Development of a Measuring Method for Dynamic Contact Forces between a Pantograph and a Contact Wire (열차 집전장치와 전차선 사이의 동적 접촉력 측정방법 개발)

  • 조용현;최강윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-285
    • /
    • 2002
  • A new method of dynamic contact force measurement between a pantograph and a contact wire is proposed in this paper The method does not require design modification of an original pantograph in order to install sensors such as load cells. Contact forces can be expressed as the sum of vertical shear forces at the support points and inertial forces. Using specially-designed strain gage rosettes. vertical shear forces at the supported points can be measured without noise mixing and thermal effects. In order to obtain contact forces from shear forces, 3 inertial force compansation methods are proposed and compared in this paper. By validation process, the new proposed measurement method is verified to be applicable to the on-line current collection test.

  • PDF

Analysis of Surface Forces in Micro Contacts between Rough Surfaces (거친 표면간의 미세 접촉에서의 표면력 해석)

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Three-Dimensional Contact Dynamic Model of the Human Knee Joint During Walking

  • Mun, Joung-Hwan;Lee, Dae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.211-220
    • /
    • 2004
  • It is well known that the geometry of the articular surface has a major role in determining the position of articular contact and the lines of action for the contact forces. The contact force calculation of the knee joint under the effect of sliding and rolling is one of the most challenging issues in this field. We present a 3-D human knee joint model including sliding and rolling motions and major ligaments to calculate the lateral and medial condyle contact forces from the recovered total internal reaction force using inverse dynamic contact modeling and the Least-Square method. As results, it is believed that the patella, muscles and tendon affect a lot for the internal reaction forces at the initial heel contact stage. With increasing flexion angles during gait, the decreasing contact area is progressively shifted to the posterior direction on the tibia plateau. In addition, the medial side contact force is larger than the lateral side contact force in the knee joint during normal human walking. The total internal forces of the knee joint are reasonable compared to previous studies.

Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy (나노스케일 표면돌기 간의 미세접촉에 대한 해석)

  • Ahn, Hyo-Sok;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads

  • Hong, Seong-Wook;Kang, Joong-Ok;Yung C. Shin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.61-71
    • /
    • 2002
  • This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris's bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring. This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings. This examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

The influence of the pre-sag of a railway contact wire to the current collection performance (200km/h급 전차선로에서 사전이도가 미치는 집전성능 영향 분석연구)

  • Cho, Yong-Hyeon;Lee, Ki-Won;Park, Chan-Bae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.227-235
    • /
    • 2007
  • The railway catenary is softer in the middle of a span than at the end. This stiffness variation induce the vertical motion of a moving pantograph, which results in the large variation of contact forces. To reduce the vertical motion of a pantograph, we can introduce a pre-sag of the contact wire. The pre-sag changes merely equilibrium position of the contact wire. Because the pantograph must follow the sag added to the motion of the contact wire, the sag gives downward forces to the pantograph. If the pre-sag is proper, the variation of the vertical motion of the pantograph is reduced. However, excessive sag worses the current collection performance because the pantograph receives too large downward forces by the contact wire. The objective of the paper is to establish the theoretical basis to understand how the pre-sag affect the contact force variation and to propose the proper sag for the railway catenary for the train speed up to 200 km/h.

  • PDF

A Study on the Measurement of Contact Force of Pantograph on High Speed Train

  • Seo Sung-Il;Cho Yong-Hyun;Mok Jin-Yong;Park Choon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1548-1556
    • /
    • 2006
  • Appropriate contact force is required for the pantograph on the high speed train to collect current from the catenery system without separation. However, at high speed, large aerodynamic lifting force is generated by the contact plate and the body of pantograph, which may cause wear of the contact wire. In this study, to confirm the interface performance of the pantograph on Korea High Speed Train, a method to measure the contact force of the pantograph was proposed and the related measuring system was developed. The forces acting on the pantograph were clarified and a practical procedure to estimate the forces was proposed. A special device was invented and applied to measure the aerodynamic lifting force. Measured contact forces were displayed by the developed system and evaluated based on the criteria.

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.

Contact Frce Cotrol of Root Hnd using VSS

  • Sim, Kwee-Bo;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1080-1084
    • /
    • 1989
  • The motion of an workpiece to be manipulated is determined by the forces applied to the workpiece. During the contact between the robot hand and the workpiece, impulsive forces may dominate all other forces, and determine the ultimate success or failure of a task. Therefore, one of the important problems in the robot hands is the control of the initial impact force. In this paper, the problem of the force control of robot hand under system with contact force is presented. The principle of energy can be applied in the modelling of the impact force. In order to achieve stable contact and avoid bounces and vibrations, VSS is adopted in the design of the contact force controller. Some simulations are carried out for a pushing operation to control the contact force.

  • PDF