• 제목/요약/키워드: contact element

검색결과 1,731건 처리시간 0.035초

Strength of Glass/Epoxy Fabric Joints under the Pin-Loading (핀하중을 받는 유리/에폭시 평직 적층판의 체결부 강도)

  • 박노희;권진희;김종훈;변준형;양승운
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.1-10
    • /
    • 2002
  • The strength of glass/epoxy fabric joints under pin-loading is estimated based on the characteristics length method and experiment. To investigate the effect of finite element idealization for the contact between pin and laminate, three modeling cases are analyzed; assuming the cosine load distribution around the contact area, constraining the radial displacement at the hole boundary, and using the contact element. To study the effect of failure criteria, Tsai-Wu and Yamada-Sun methods are applied on the characteristic curve. The results of the nonlinear analysis using the contact element showed good agrements with experimental data in both laminates made of uni-directional prepreg tapes and fabrics. In terms of failure criteria, Tsai-Wu method showed better agreement with experimental results than the one by Yamada-Sun laminate.

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제20권6호
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.

Efficient Finite Element Analyses of Contact Problems by Domain/Boundary Decomposition Method (영역/경계 분할법을 이용한 저복 문제의 효율적인 유한요소 해석)

  • Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제35권5호
    • /
    • pp.404-411
    • /
    • 2007
  • new domain/boundary decomposition method is suggested to perform efficient finite element analyses of contact problems. A penalty method is used for connecting an interface or contact interfaces with neighboring subdomains that satisfy continuity conditions. As a result, the derived effective stiffness matrices are always positive definite, and computational efficiency can be improved to a considerable degree. Moreover, any complex-shaped domain can be divided into independently modeled subdomains without considering the conformity of meshes along the interface. Using a computer code based on the present method, these advantageous features are confirmed through a set of numerical examples.

Dynamic Contact Analysis of Composite Structures by Connecting Finite Element Subdomains (유한요소 부영역의 결합을 통한 복합재료 구조물의 동적 접촉 해석)

  • Sin, Ui Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제31권5호
    • /
    • pp.55-62
    • /
    • 2003
  • Subdomain-interface variational formulation is presented to solve a class of dynamic contact problems of composite structures. The penalty method is used for imposing inequality constraints on contact surfaces and for connecting finite element subdomains that satisfy interface compatibility conditions. As a result, any complex-shaped domain can be easily divided into independently modeled subdomains without considering the conformity of meshes on interfaces. Some advantageous features of the present method are shown through a set a numerical studies with a developed computer code.

Effect of stem design on contact pressure distribution of end-of-stem in revision TKR (슬관절 재전치환술용 경골삽입물 형상이 접촉압력 분포에 미치는 영향)

  • Kim Y.H.;Koo K.M.;Kwon O.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2006
  • In this study, the effect of stem-end design on contact pressure and stress distribution in revision TKR was investigated using finite element method. The finite element model of tibia, including the cortical bone, the cancellous bone and canal, was developed based on CT images. The stem models with various stem lengths, diameters and frictional coefficients, and press-fit effects were considered. The results showed that the longer stem length, the stronger press-fit, the bigger stem diameter, and the higher frictional coefficient increased both peak contact pressure and the highest Von-Mises stress values. We hypothesized that peak contact pressure and Von-Mises stress distribution around the stem, may be related to the stem end pain. The results of this study will be useful to design the stem endand reduce the end-of-stem pain in revision TKR.

  • PDF

Perforation threshold energy of carbon fiber composite laminates

  • Hwang, Shun-Fa;Li, Jia-Ching;Mao, Ching-Ping
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.199-209
    • /
    • 2012
  • Two carbon fiber composite laminates, $[0/90]_{2S}$ and $[0/+45/90/-45]_S$, were considered in this work to find out the perforation threshold energy to complete the perforation process and the corresponding maximum contact force. Explicit finite element commercial software, LS-DYNA, was used to predict these values. According to the simulation results, these two types of composite laminates were tested by using a vertical drop-weight testing machine. After testing, the damage condition of these specimens were observed and compared with the results from finite element analysis. The testing results indicate that the perforation threshold energy is 6 Joules for $[0/90]_{2S}$ and 7 Joules for $[0/+45/90/-45]_S$, which is in good agreement with the simulation results. Also, the maximum contact force at the case of perforation threshold energy is the lowest as compared to the maximum contact forces occurring at the impact energy that is larger or less than the perforation threshold energy.

Feasibility Study of Friction Characteristics for Impact Analysis (충돌 해석 시 마찰 모델 적용을 위한 기초 마찰 시험 연구)

  • Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.112-116
    • /
    • 2021
  • Appropriate friction model usage is important for impact analysis because the relative motions between parts that are in contact for very short durations can vary greatly depending on the friction model. Vehicle seat components that have significant effects on impact analysis are also considered. This paper presents an experimental investigation of various material contact pairs to obtain the friction parameters of the Benson exponential friction model for impact simulation. The Coulomb friction model has limitations for impact analysis because of singularity at zero velocity. Metal/nonmetal materials are prepared, and friction tests are conducted for various sliding speeds, loads, and lubrication conditions. The obtained data are used in the friction model to implement finite element analysis. The parameters of the friction model are obtained by the curve-fitting method. The experimental results show that the friction coefficient with metal/nonmetal contact pairs is stable regardless of the working conditions. The friction model used in this study can also be applied for finite element analysis of the crash conditions, where the friction changes abruptly at the contact interface; the obtained friction parameters are also expected to be more accurate with more precise tests under different working conditions. These results can help improve the accuracy of the finite element analysis.

Microcontacting behaviour of material with fractal rough surface (프랙탈 표면을 가진 공구와 재료의 마이크로 접촉거동해석)

  • Kim, Young-Suk;Hyun, Sang-Il
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 2009
  • Finite-element methods are used to study non-adhesive, frictionless rough contact of elastic and plastic solids. Roughness on spherical surfaces is realized by self-affine fractal. True contact area between the rough surfaces and flat rigid surfaces increases with power law under external normal loads. The power exponent is sensitive to surface roughness as well as the curvature of spherical geometry. Surface contact pressures are analyzed and compared for the elastic and plastic solids. Distributions of local contact pressure are shown dependent on the surface roughness and the yield stress of plastic solids.

  • PDF

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF