• Title/Summary/Keyword: contact element

검색결과 1,731건 처리시간 0.022초

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권9호
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

Stress Analysis at the Contact Boundary between the Work Roll and the Back-up Roll for a SmartCrown Roll Profile Shape (SmartCrown Roll Profile 형상에 따른 Work Roll과 Back-up Roll 접촉경계면의 응력해석)

  • Song, S.H.;Kim, S.R.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • 제24권3호
    • /
    • pp.212-217
    • /
    • 2015
  • SmartCrown is a system to control the plate crown by shifting the sine-shaped work rolls in the axial direction. The control range of the plate crown depends on a depth of sine-shaped roll profile because the roll radius varies continuously along the axial direction. When the roll profile is changed to improve the control range, the contact stress between the work roll and the back-up roll also changes. In the current study, the contact stress for various profiles and rolling conditions were analyzed using the finite element method and compared with results from Hertzian contact theory. A submodel method is used to increase the accuracy of the finite element analysis. The analysis results showed that the maximum increase in the contact stress was only 53MPa, so it is anticipated that no back-up roll spalling will occur.

Finite Element Analysis of High-speed Rotating Disks Considering Impulsive Loading by the Clearance and Contact (간격 및 접촉에 의한 충격하중을 고려한 고속 회전 디스크의 유한요소 해석)

  • Lee, Kisu;Kim, Yeong Sul;So, Jae Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제24권1호
    • /
    • pp.45-53
    • /
    • 2014
  • For the time integration solution of the impulsive dynamic contact problem of high-speed rotating disks formulated by the finite element technique, the velocity and acceleration contact constraints as well as the displacement contact constraint are imposed for the numerical stability without spurious oscillations. The solution of the present technique is checked by the numerical simulation using the concentric high-speed rotating disks with the clearance and impulsive loading. It is shown that the almost steady state solution agrees with the corresponding analytical solution of the elasticity and that the differentiated constraints are crucial for the numerical stability of such high-speed contact problems of the disks under impulsive loading.

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권3호
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

Contact analysis in functionally graded layer loaded with circular two punches

  • Muhammed T. Polat;Alper Polat
    • Computers and Concrete
    • /
    • 제33권1호
    • /
    • pp.13-25
    • /
    • 2024
  • In this study, contact analysis in a functionally graded (FG) layer loaded with two circular punches is solved using the finite element method (FEM). The problem is consisted of a functionally graded layer that resting on an elastic semi-infinite plane and is loaded with two rigid punches of circular geometry. External loads P and Q are transferred to the layer via two rigid punches. The finite element model of the functionally graded layer is created using the ANSYS package program and a 2-dimensional analysis of the problem is analyzed. The contact lengths, obtained as a result of the analysis are compared with the analytical solution in the literature. In the study, the effects of parameters such as distances between punches, loads, inhomogenity parameter on contact zones, initial separation loads and distances, normal stresses, stresses across depth and contact stresses are investigated. As a result, in this study, it can be said that the magnitude of the stresses occurring in the FG layer is less than the homogeneous layer, therefore the life of FG materials will be longer than the homogeneous layer. When the distance between the punches is 2.25, the initial separation distance is 6.98, and when the distance between the punches is 4, the initial separation distance decreases to 6.10. In addition, when the load increased in the second punch, the initial separation load decreased from 55 to 18. The obtained results are presented in the form of graphs and tables.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제13권5호
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method (벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링)

  • 장동환;황병복
    • Transactions of Materials Processing
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

A Proposal of an Analytical Method for Estimating the Opening Behaviour of Tip-Closed Crack in Compressive Residual Stress by Finite Element Method (압축잔류응력에 의하여 선단부가 닫힌 균열의 개구거동에 대한 유한요소법에 의한 해석방법의 제안)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.71-76
    • /
    • 2003
  • For the purpose of clarifying the influence of welding residual stress to the fatigue crack propagations behaviour, an analytical investigation based on finite element method is performed to examine the opening behaviour of tip-closed crack in the compressive residual stress. A finite element model comprised of contact elements for the crack plane and plane stress elements for the base material is used to evaluate crack opening stress of the crack existing in the residual stress field. Also an analytical method based on the superposition principle to estimate the length of opened part of tip closed crack and the stress distribution adjacent to the crack during uploading is applied to the finite element model. The software for the analysis is ABAQUS, which is a general purpose finite element package. The results show that stresses distributed on the crack surfaces are reduced and approached to zero as the applied stresses are increased up to crack tip opening stress and no mechanical discontinuity is found at the boundary of contact elements and plane stress elements. It is verified that the opening behavior of the fatigue crack in the residual stress can be predicted by finite element method with the proposed analytical method.