• Title/Summary/Keyword: contact displacement

Search Result 592, Processing Time 0.03 seconds

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

A Study on Laser Interferometer Development for Micro Displacement Measurement in Micro Former (마이크로 성형기에서 미세 변위 측정을 위한 레이저 간섭계 개발에 관한 연구)

  • 최재원;김대현;최경현;이석희;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1195-1198
    • /
    • 2003
  • Micro former has been known as a useful tool for machining micro parts. It makes micro holes automatically with punches, a hole-shape die and material by rotation of crank shaft synchronously. Micro displacement in micro forming affects on the performance of machining because micro forming size is similar with its mechanical displacement. Therefore, the measurement of this micro displacement is essential to be guaranteed to obtain high forming precision in the whole machine as well as its devices. This paper addresses the development of a laser interferometer to measure micro displacement for a micro former. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. For the experiment, a laser probe is installed on the optical table with optical devices and a micro displacement generating device. The velocity decoding board is also added to calculate doppler shift frequency directly. Finally simple experiments are conducted to confirm its functional operation.

  • PDF

Contact surface element method for two-dimensional elastic contact problems

  • Liu, Zhengxing;Yang, Yaowen;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.363-375
    • /
    • 1998
  • The stiffness matrix of a two-dimensional contact surface element is deduced from the principle of virtual work. The incremental loading procedure used is controlled by displacement and stress. Special potential contact elements are used to avoid the need to rearrange the FEM mesh due to variations of the contact surface as contact develops. Published results are used to validate the method, which is then applied to a turbine to solve the contact problem between the blade root and rotor in the region in which a 'push fit' connects the blade to its rotor.

Effect of Contact Statistics on Electrical Contact Resistance (전기접촉저항에 관한 접촉통계치의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1080-1085
    • /
    • 2003
  • The flow of electrical current through a microscopic actual contact spot between two conductors is influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect is developed and used to predict the contact resistance when the statistical size and spatial distribution of contact spots is known. To illustrate the use of the method, an idealized fractal rough surface is defined using the random midpoint displacement algorithm and the size distribution of contact spots is assumed to be given by the intersection of this surface with a constant height plane. With these assumptions, it is shown that including finer scale detail in the fractal surface, equivalent to reducing the sampling length in the measurement of the surface, causes the predicted resistance to approach the perfect contact limit.

  • PDF

Developing an Instrument Ensuring Reliable Contact Conditions for Contact-Type Area-varying Capacitive Displacement Sensors (접촉식 면적변화형 정전용량 변위센서의 접촉 안정성을 위한 기구의 개발)

  • Kim, Sung-Joo;Lee, Won-Goo;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1147-1156
    • /
    • 2011
  • A contact-type area-varying capacitive displacement sensor, or CLECDiS, can measure displacements over millimeter ranges with nanometer resolution. However, a small changes in the contact condition due to the surface profile or friction, which are inherent characteristics of contact-type sensors, lead to significant distortion of the output signal. Therefore, ensuring reliable contact conditions during CLECDiS measurements is the most important area to be improved in their actual use. Herein, in order to design an instrument for ensuring reliable contact conditions, the contact condition is analyzed by characterizing the signal distortion, observing the pressure distribution between the contacting surfaces, and measuring the motional errors of the sensor using a laser Doppler vibrometer (LDV). The manufactured instrument enables a CLECDiS to be used in an ultraprecise positioning system with improved reliability.

A Study of Micro Displacement Measurement of Micro System using the Laser Interferometer (레이저 간섭계를 이용한 마이크로 시스템의 미소변위 측정에 관한 연구)

  • Choi, Kyung-Hyun;Kim, Chang-Jong;Cho, Su-Jeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.22-26
    • /
    • 2006
  • This paper addresses the development of a laser interferometer to measure micro displacement for a micro system. The laser interferometer is able to measure micro displacement during a few micro seconds with non-contact. In order to employ the interferometer, the displacement calibration experiment should be required. For the experiment, a laser probe installed on the optical table with optical devices and a micro stage. The velocity decoding board is also added to calculate doppler shift frequency directly. The output signal is processed by LabView. Finally experiments are found out the relation between displacement and output signal.

  • PDF

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정적·동적 변위 계측과 속도·가속도 추산방식 연구)

  • Heo, Seok;Lee, Bum-Ho;Jang, Il-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2011
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, CCD(charge coupled device) image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration displacement, velocity and acceleration directly without any contact. The current resolution for the displacement measurement can be seen from the results.

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF