• Title/Summary/Keyword: contact AFM

Search Result 259, Processing Time 0.03 seconds

The Evaluation of Property of Colored Contact Lenses (칼라콘택트렌즈의 물성적 특성 평가)

  • Park, Hyun-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.2
    • /
    • pp.119-126
    • /
    • 2005
  • The purpose of this study was analyzed to compare on the physical characters of two companies of color contact lenses. Artificial tear solution was used for measuring the rate of protein deposits and wettability. The surface roughness of lenses was measured by SEM(scanning electron microscope, Japan) and AFM(atomic force microscope, MultimodeTM, USA). As a results, The color contact lenses was not different from general soft contact lenses in a respect of other properties. However, the colored contact lenses showed a severe crack on the surface under SEM observation. There was no irregularity on the surface of the colored contact lenses in AFM photograph. The dyes were deposited in inside of lenses by microscope observation.

  • PDF

Molecular Dynamics Simulation of Contact Process in AFM/FFM Surface Observation

  • Shimizu, J.;Zhou, L.;Eda, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.61-62
    • /
    • 2002
  • In order to clarify the contact mechanism between specimen surface and probe tip in the surface observation by the AFM (atomic force microscope) or the FFM (friction force microscope), several molecular dynamics simulations have been performed. In the simulation, a 3-dimensional simulation model is proposed where the specimen and the probe are assumed to consist of mono-crystal line copper and a carbon atom respectively and the effect of cantilever stiffness is also taken into considered. The surface observation process on a well-defined Cu{100} is simulated. The influences of cantilever stiffness on the reactive force images and the behavior of probe tip were evaluated. As a resuIt, several phenomena similar to those observed by the actual surface observation experiment, such as double-slip behavior and dispersion in the stick-slip wave period were observed.

  • PDF

Design and Fabrication of a Vacuum Chamber for a Commercial Atomic Force Microscope

  • Park, Sang-Joon;Jeong, Yeon-Uk;Park, Soyeun;Lee, Yong Joong
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 2014
  • A vacuum chamber for a commercial atomic force microscope (AFM) is designed and fabricated. Only minimal modifications were made to an existing microscope in an effort to work in a vacuum environment, while most of the available AFM functionalities were kept intact. The optical alignment needed for proper AFM operations including a SLD (superluminescent diode) and a photodiode can be made externally without breaking the vacuum. A vacuum level of $5{\times}10^{-3}$ torr was achieved with a mechanical pump. An enhancement of the quality factor was observed along with a shift in the resonance frequency of a non-contact-mode cantilever in a vacuum. Topographical data of a calibration sample were also obtained in air and in a low vacuum using the non-contact mode and the results were compared.

150 nm Pitch Measurement using Metrological AFM (길이 소급성을 갖는 AFM을 이용한 150nm 피치 측정)

  • ;I. Misumi;S. Gonda;T. Kurosawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.264-267
    • /
    • 2003
  • Pitch measurements of 150 nm pitch one-dimensional grating standards were carried out using an contact mode atomic force microscopy(C-AFM) with a high resolution three-axis laser interferometer. It was called as 'Nano-metrological AFM' In Nano-metrological AFM, Three laser interferometers were aligned well to the end of AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$-stablilzed He-Ne laser at a wavelength of 633 nm. So, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM has a traceability to the length standard directly. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement(GUM). The Primary source of uncertainty in the pitch-measurements was derived from repeatability of pitch-measurement, and its value was approx 0.186 nm. Expanded uncertainty(k=2) of less than 5.23 nm was obtained. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

  • PDF

Nano/Micro Friction with the Contact Area (접촉 면적에 따른 나노/마이크로 마찰 특성)

  • Yoon Eui-Sung;Singh R. Arvind;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • Nano/micro friction with the contact area was studied on Si-wafer (100) and diamond-like carbon (DLC) film. Borosilicate balls of radii $0.32{\mu}m,\;0.5{\mu}m,\;1.25{\mu}m\;and\;2.5{\mu}m$ mounted on the top of AFM tip (NPS) were used for nano-scale contact and Soda Lime glass balls of radii 0.25mm, 0.5mm, 1mm were used for micro-scale contact. At nano-scale, the friction between ball and surface was measured with the applied normal load using an atomic force microscope (AFM), and at micro scale it was measured using ball-on flat type micro-tribotester. All the experiments were conducted at controlled conditions of temperature $(24\pm1^{\circ}C)$ and humidity $(45\pm5\%)$. Friction was measured as a function of applied normal load in the range of 0-160nN at nano scale and in the range of $1000{\mu}N,\; 1500{\mu}N,\;3000{\mu}N\;and\;4800{\mu}N$ at micro scale. Results showed that the friction at nano scale increased with the applied normal load and ball size for both kinds of samples. Similar behavior of friction with the applied normal load and ball size was observed for Si-wafer at micro scale. However, for DLC friction decreased with the ball size. This difference of in behavior of friction in DLC nano- and microscale was attribute to the difference in the operating mechanisms. The evidence of the operating mechanisms at micro-scale were observed using scanning electron microscope (SEM). At micro-scale, solid-solid adhesion was dominant in Silicon-wafer, while plowing in DLC. Contrary to the nano scale that shows almost a wear-less situation, wear was prominent at micro-scale. At nano- and micro-scale, effect of contact area on the friction was discussed with the different applied normal load and ball size.

The Effects of Plasma Surface Treatment on Fluorosilicone Acrylate RGP Contact Lenses (불화규소 아크릴레이트 RGP 콘택트렌즈의 플라즈마 표면처리 효과)

  • Jang, Jun-Kyu;Shin, Hyung-Sup
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: Rigid gas permeable (RGP) contact lenses, based on fluorosilicone acrylate, were treated with plasma in air. Methods: The chemical compositions were analyzed by using X-ray photoelectron spectroscopy (XPS), the surface morphology and roughness of RGP contact lenses were observed by using atomic force microscopy (AFM), and the wettability changes were estimated by wetting angle measurement. Results: As the contact lenses were treated by the plasma, the F contents decreased significantly, and the O and Si contents increased on the surface. The number of oxygen-containing hydrophilic radicals (C-O and Si-O) increased greatly, the hydrophobic surface decreased, and the wetting angle increased. But the C-O bonds created with exchange of the fluorine did not increase a wettability. The surface compositions were not remarkably changed for the 6 months after plasma treatment, but the wetting angle increased again. Conclusions: It was considered that the improved wettability of the RGP contact lenses of high fluorine content after plasma treatment was affected by the activation of surface, the increase of Si-O, and the decrease of hydrophobic surface.

Accurate Determination of Spring Constants of Micro Cantilevers for Quantified Force Metrology in AFM (AFM에서의 정량적 힘 측정을 위한 마이크로 캔틸레버의 강성 교정)

  • Kim, Min-Seok;Choi, Jae-Hyuk;Kim, Jong-Ho;Park, Yon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.96-104
    • /
    • 2007
  • Calibration of the spring constants of atomic force microscopy (AFM) cantilevers is one of the issues in biomechanics and nanomechanies for quantified force metrology at pieo- or nano Newton level. In this paper, we present an AFM cantilever calibration system: the Nano Force Calibrator (NFC), which consists of a precision balance and a one-dimensional stage. Three types of AFM cantilevers (contact and tapping mode) with different shapes (beam and V) and spring constants (42, 1, 0.06 N $m^{-1}$) are investigated using the NFC. The calibration results show that the NFC can calibrate the micro cantilevers ranging from 0.01 ${\sim}$ 100 N $m^{-1}$ with relative uncertainties of less than 2%.

Surface damage analysis of Head/Disk interface using AFM (AFM을 이용한 Head/Disk의 표면파손에 관한 고찰)

  • 정구현;이성창;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.357-361
    • /
    • 1997
  • In this work surface damage of head and disk of head disk drive was analysed using an Atomic Force Microscpoe. The initial damage of the disk occurred by generation of extermely small wear particles. Also it was show that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

A Study on the Surface Damage between Head/Disk Interfaces by Using AFM (AFM을 이용한 Head/Disk의 표면 파손에 관한 고찰)

  • 이성창;정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.167-174
    • /
    • 1998
  • In this work the surface damage of head and disk of a hard disk drive was analysed using an Atomic Force Microscope. The initial damage of the disk occurred by generation of extremely small wear particles. Also it was shown that wear particles tend to pile up near the front side of the slider. The surface damage mechanism of drag test and contact-start-stop test was found to be quite similar.

  • PDF

Effect of self-assembled monolayer and aluminum oxide ALD film on a PMMA substrate

  • Shin, Sora;Park, Jongwan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.525-529
    • /
    • 2018
  • The antireflective (AR) coated poly methyl methacrylate (PMMA) substrate was deposited by atomic layer deposition (ALD) on a self-assembled monolayer (SAM) to improve hydrophobicity and mechano-chemical properties of organic thin films. The water contact angles (WCA) were tested to characterize the surface wettability of SAM octadecyltrichlorosilane (OTS) films. Results showed that a contact angle of $105.9^{\circ}$ was obtained for the SAM films with an annealing process, and the highest WCA of $120^{\circ}$ was achieved for the films prepared by the SAM and ALD multi-process. The surface morphology of the SAM films with different assembly times and varying number of ALD cycles was obtained by atomic force microscopy (AFM). The maximum light transmittance for the SAM films on the PMMA substrate reached 99.9% at a wavelength of 450 nm. It was found that the SAM surfaces were not affected at all by the ALD process.