• 제목/요약/키워드: contact AFM

검색결과 260건 처리시간 0.028초

초소형 마이크로 부품 표면 측정 시스템 개발 (Development of a measurement system for the surface of micro-parts)

  • 홍성욱;고명준;신영현;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.413-418
    • /
    • 2005
  • This paper proposes a measurement method for the surface of micro-parts by using AFM(Atomic Force Microscope). To this end, two techniques are presented to extend the capacity of AFM. First, the measurement range is extended by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM's, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is presented by using the inherent trigger mechanism due to the atomic force. The proposed method is proved effective through a series of experiments.

  • PDF

접촉각 측정을 통한 불화 유기박막의 특성 평가 (Characterization of Fluorocarbon Thin Films by Contact Angle Measurements)

  • 박진구;차남구;신형재;박장호
    • 마이크로전자및패키징학회지
    • /
    • 제6권1호
    • /
    • pp.39-49
    • /
    • 1999
  • Monolayer 두께의 불화된 유기박막의 특성을 접촉각 측정을 통해 분석 하였다. 정접촉각을 표면장력의 다른 세 가지의 극성(water, formamide), 비극성(diiodomethane) 용액을 이용하여 Teflon, Spin coating된 FC막, 기상증착된 PFDA와 FC막위에 측정하였다. Aluminum위에 증착된 불화 유기박막이 물에 대해 $130^{\circ}$가 넘는 가장 큰 정접촉각을 나타내었다. 반면에 산화막위에 증착된 유기박막은 $70^{\circ}$미만의 낮은 접촉각을 갖었다. Teflon은 $108^{\circ}$, Spin coating된 막은 $121^{\circ}$로 측정되었다. 이들 측정된 값을 이용 Lewis acid/base 이론에 적용 박막의 표면에너지를 계산한 결과 Teflon의 경우는 18 dynes/cm, Spin coating된 유기박막은 8.4 dynes /cm의 낮은 에너지 값이 계산되었다. 실리콘과 산화막위에 증착된 유기박막은 상대적으로 높은 31~35 dynes /cm의 값을 나타내었으나 aluminum위에 증착된 막에서는 Lewis base 항이 큰 음수 값을 갖는 이례적인 경우가 발생하였다. 이때 음수값을 무시한 경우 계산된 aluminum 상의 증착된 유기박막의 표면에너지 PFDA가 13dynes / cm 이였다. 이는 동접촉각과 AFM 측정결과 다른 표면과는 다르게 aluminum강의 유기박막의 비균질성과 표면의 높은 거칠기에 기인함을 알 수 있었다.

  • PDF

$UV/O_3$을 이용한 Si contact hole 건식세정에 관한 연구 (Dry Cleaning of Si Contact Hole using$UV/O_3$ Method)

  • 최진식;고용득;구경완;김성일;천희곤
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권1호
    • /
    • pp.8-14
    • /
    • 1997
  • The UV/O$_{3}$ dry cleaning has been well known in removing organic molecules. The UV/O$_{3}$ dry cleaning method was performed to clean the Si wafer surfaces and contact holes contaminated by organic molecules such as residual PR. During the cleaning process, the Si surfaces were analyzed with X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometer. When the UV/O$_{3}$ dry cleaning at 200'C was performed for 3 minutes, the residual photoresist was almost removed on Si wafer surfaces, but Si surfaces were oxidized. For UV/O$_{3}$ application of contact hole cleaning, the contact string were formed using the equipment of ISRC (Inter-university Semiconductor Research Center). Before Al deposition, UV/O$_{3}$ (at 200.deg. C) dry cleaning was performed for 3 minutes. After metal annealing, the specific contact resistivity was measured. Because UV/O$_{3}$ dry cleaning removed organic contaminants in contact holes, the specific contact resistivity decreased. Each contact hole size was different, but the specific contact resistivities were all much the same. Thus, it is expected that the UV/O$_{3}$ dry cleaning method will be useful method of removal of the organic contaminants at smaller contact hole cleaning.

  • PDF

APPLICATION OF FFT-BASED ANALYSIS TO CONTACT CONDITION PREDICTION FOR TRIBOLOGICAL SURFACE DESIGN

  • Sung, I.H.;Lee, H.S.;Kim, D.E.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.255-256
    • /
    • 2002
  • In this paper, the frictional behavior according to the contact geometry was investigated using a micro-tribotester built inside a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). FFT (Fast Fourier Transform) analysis for friction was conducted as a method to interpret the contact condition. From the experimental results, it could be concluded that the relative dimensions and distribution of contact asperities on the surface could be predicted by the power spectrum and main frequency in the FFT analysis of the friction signal.

  • PDF

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성 (Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods)

  • 윤의성;오현진;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제21권3호
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.

거친 표면간의 미세 접촉에서의 표면력 해석 (Analysis of Surface Forces in Micro Contacts between Rough Surfaces)

  • 김두인;안효석;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구 (A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop)

  • 조언정
    • Tribology and Lubricants
    • /
    • 제19권2호
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

High aspect ratio 팁의 비접촉모드에서의 측정 (Non-contact mode measurement of high aspect ratio tip)

  • 신영현;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.463-464
    • /
    • 2006
  • This paper present experimental results by non-contact mode Atomic Force Microscopy using high aspect ratio tips (HAR-T). We fabricated the carbon nanotube tip based on dielectrophoresis and the carbon nano probe by focused ion beam after dielectrophoretic assembling. In this paper, we measure AAO sample and trench structure to estimate HAR-T's performance and compared with conventional Si tip. We confirmed that results of HAR-T's performance in non contact mode was very superior than conventional tip.

  • PDF