• Title/Summary/Keyword: contact - friction

Search Result 995, Processing Time 0.028 seconds

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes (2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화)

  • An, Dong-Gyu;Jeong, Dong-Won;Jeong, Wan-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete (발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구)

  • Min, Gyeong-Jo;Ko, Young-Hun;Fukuda, Daisuke;Oh, Se-Wook;Kim, Jeong-Gyu;Chung, Moon-Kyung;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.26-35
    • /
    • 2019
  • In designing a gravity-type anchorage of earth-anchored suspension bridge, the contact friction between a blasted rock mass and the concrete anchorage plays a key role in the stability of the entire anchorage. Therefore, it is vital to understand the shear behavior of the interface between the blasted rock mass and concrete. In this study, a portable 3D LiDAR scanner was utilized to scan the blasted bottom surfaces, and rock surface roughness was quantitatively analyzed from the scanned profiles to apply to 3D FEM modelling. In addition, based on the 3D FEM model, a three-dimensional dynamic fracture process analysis (DFPA-3D) technique was applied to study on the shear behavior of the interface between blasted rock and concrete through direct shear tests, which was analyzed under constant normal load (CNL). The effects of normal stress and the joint roughness on shear failure behavior are also analyzed.

Design Optimization of a Paper Feeding Mechanism using Numerical Analysis Program (수치해석 프로그램을 이용한 미디어 이송 장치의 기구학적 최적설계)

  • Lee S.G.;Choi J.H.;Bae D.S.;Cho H.J.;Song I.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.107-108
    • /
    • 2006
  • This paper shows the design optimization of the paper feeding mechanism under dynamic behavior by using commercial codes of RecurDyn/MTT2D and RecurDyn/AutoDesign which are developed by functionBay, Inc. A virtual mockup for dynamics analysis of the paper feeding mechanism is build on RecurDyn/MTT2D and is simulated. Flexible paper is represented as a series of rigid bars connected by revolute joints and rotational spring dampers. Paper is fed by a contact and friction mechanism on rollers or guides. The slip of the paper and nip force of rollers are measured to estimate the system performance. After a simulation, these performances are automatically send to RecurDyn/AutoDesign which is a sequential approximate optimization tool based on the response surface modeling. RecurDyn/AutoDesign makes the approximate objective function and computes the optimized design points of the design variables and gives them to analysis tool. And then the simulation is repeated with the updated design variables. These processes are repeated until finding a tolerable design optimization. In this paper, a paper feeding mechanism is introduced and it is optimized with the proposed algorithms.

  • PDF

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance (자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구)

  • Huh, Young-Min;Lee, Kwang-O;Sim, Tae-Yang;Kang, Sung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.

Study on Rib's Structural Details of Double Baseplate Connection Through Numerical Analysis (수치해석을 통한 이중 베이스플레이트 연결부의 리브 구조 상세에 대한 연구)

  • Hwang, Won Sup;Kim, Hee Ju;Ham, Jun Su;Hwang, Seung Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • In this study, steel-pier's structural behavior by design variables of ribs were analyzed in order to improve structural details of ribs supporting double base plates. A numerical analysis was conducted using commercial FE analysis program. Anchor bolts and reinforced bars were made of BEAM element, and coefficient of friction was applied to contact surfaces. After that, the analytical result was compared with experiment of previous study to verify analysis methods. Steel-pier's load-displacement relation was analyzed according to various rib's design variables (rib's central angle, height, thickness) by using proven analysis methods, and proper rib's design ranges were proposed.

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

Relationship between Forward Head Posture and Craniomandibular Disorders (두개하악장애와 두부전방자세와의 관계)

  • Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.137-149
    • /
    • 1994
  • This study was performed to investigate the relationship between Forward Head Posture(FHP) and Craniomandlbular Disorders(CMDs). Many studies reported that there was some relationship between them, however, there is still controversy. So It Is necessary to observe and compare many more patients with CMDs wirh normal controls. For the study 85 patients with CMDs and 37 dental students were selected as experimentals and controls, respectively. And the experimentals were classified Into two groups, that is, TMJ internal derangement group and muscle disorders group according to clinical diagnosis. For measuring the FHP, CROM(Cervical-Range-of-Notion)was used. This goniometer is composed of three part. First, gravity goniometer for flexion and extension. Second, magnetic compass and yoke for rotational movement. And last, forward head arm and vertebra locator for forward head posture. Next T-Scan, electronic occlusal analyzer, was used for recording of occlusal contact state. Other items such as maximum opening, lateral excursion, Helkimo's anamnestic index, and muscle palpation point from Friction's craniomandibular index were checked clinically by one examiner. The result of this study were as follows : 1. In male, control group showed much more measurement in resting forward head posture than did experimental group. But there were not significant differences between groups in female subject. From this results, the author contended that CROM is new measuring system and differ from other goniometers in some aspect, so that results should be re-evaluated 2. Mean value of maximum mouth opening in nearly all groups were greater than 40mm. and mouth opening had a significant correlation with occlusal force and with anamnestic index both sex. 3. Mean value of palpation point had not any correlationship with forward head posture in both sex, but there was significant difference between upper and lower group by rounded shouldes. 4. In summary, there was no significant relationship between forward head posture and sign and symptom of Craniomandibular Disorders.

  • PDF

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF