• 제목/요약/키워드: contact - friction

검색결과 997건 처리시간 0.035초

FEM을 이용한 구체무단변속기의 응력해석 (Stress Analysis of the S-CVT using Finite Element Method)

  • 김정윤
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.41-47
    • /
    • 2008
  • This article deals with the stress analysis of the friction drive, which transmits the power via the rolling resistance on the contract area between the two rotating bodies. On the contact area, friction drives are normally involved with shear stress due to the transmitted force, as well as normal stress. Thus the stress analysis including the shear stress is necessary for the design of the friction drive. Hertzian results can be used to estimate the normal stress distribution and elastic deflection of the contact area, although the shear stress distribution is not well defined. In order to investigate the shear stress distribution and its effects in a friction drive, we have performed the stress analysis of the spherical continuously variable transmission(CVT) using finite element method. The spherical CVT is one of friction drives, which is used in small power applications. The numerical results show that the normal stress distribution is not affected by the transmitted shear force, and the maximal shear stress is increased in small amount along with the shear force.

  • PDF

경질탄소 필름과 대면물질 경도변화에 대한 트라이볼로지 특성 (Tribology Characteristics of DLC Film Based on Hardness of Mating Materials)

  • 나병철;전중장호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.50-55
    • /
    • 2003
  • Tribological testing of DLC films was conducted using a rotating type ball on a disk friction tester in a dry chamber. This study made use of four kinds of mating balls that were made with stainless steel but subjected to diverse annealing conditions in order to achieve different levels of hardness. In all load conditions using martensite mating balls, the test results demonstrated that the friction coefficient was lower when the mating materials were harder. The high friction coefficient found in soft martensite balls appeared to be caused by the larger contact areas. The wear track on the mating balls indicated that a certain amount of material transfer occurs from the DLC film to the mating ball during the high friction process. Raman Spectra analysis showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

  • PDF

A CONVERGENCE RESULTS FOR ANTIPLANE CONTACT PROBLEM WITH TOTAL SLIP RATE DEPENDENT FRICTION

  • AMMAR, DERBAZI
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.813-823
    • /
    • 2021
  • In this work, we present the classical formulation for the antiplane problem of a eletro-viscoelastic materialswith total sliprate dependent friction and write the corresponding variational formulation. In the second step, we prove that the solution converges to the solution of the corresponding electro-elastic problem as the viscosity converges to zero.

구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성 (Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF

Weiss형 등속조인트 볼 홈의 접촉응력평가 (Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • 제5권2호
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.

유한요소법을 이용한 드럼브레이크의 응력 및 온도 해석 (Stress and temperature analysis of a drum brake using FEM)

  • 함선균;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.707-710
    • /
    • 2001
  • Brakes are one of the important safety parts in cars. The requirements of brakes in performance, in comfort, and working lifetime are high. This paper presents the static analysis on the stress and temperature of a automotive drum brake. The particular interest is the distribution of the contact pressure between brake lining and drum. The problems to be solved are the effects of friction coefficient, actuation force, temperature, and brake component's stiffness. The contact problem includes friction, and is solved using the ABAQUS.

  • PDF

접촉문제에서의 변분부등식의 유한요소해석과 A Priori 오차계산법 (A Solution of Variational Inequalities and A Priori Error Estimations in Contact Problems with Finite Element Method)

  • 이춘열
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2887-2893
    • /
    • 1996
  • Governing equations infrictional contact problems are introduced using variational inequality formulations which are regularized to overcome the diffculties of non-differentiability of the friction functional. Also finite element approximations and a priori error estimations are derived based on those formulations. Numerical simulations are performed illustrating the theoretical results.

접촉해석에 의한 철도차량용 제동패드의 형상 최적화 (Topology Optimization of Railway Brake Pad by Contact Analysis)

  • 구병춘;나인균
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.