• Title/Summary/Keyword: construction parameters

Search Result 2,406, Processing Time 0.031 seconds

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

A method for discrete event simulation and building information modelling integration using a game engine

  • Sandoval, Carlos A. Osorio;Tizani, Walid;Koch, Christian
    • Advances in Computational Design
    • /
    • v.3 no.4
    • /
    • pp.405-418
    • /
    • 2018
  • Building Information Modelling (BIM) and Discrete Event Simulation (DES) are tools widely used in the context of the construction industry. While BIM is used to represent the physical and functional characteristics of a facility, DES models are used to represent its construction process. Integrating both is beneficial to those interested in the field of construction management since it has many potential applications. Game engines provide a human navigable 3D virtual environment in which the integrated BIM and DES models can be visualised and interacted with. This paper reports the experience obtained while developing a simulator prototype which integrates a BIM and a DES model of a single construction activity within a commercial game engine. The simulator prototype allows the user to visualise how the duration of the construction activity is affected by different input parameters interactively. It provides an environment to conduct DES studies using the user's own BIM models. This approach could increase the use of DES technologies in the context of construction management and engineering outside the research community. The presented work is the first step towards the development of a serious game for construction management education and was carried out to determine the suitable IT tools for its development.

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems. This paper aims to better understand the complexity and dynamics of safety management in small construction companies. A system dynamics (SD) model was built in order to capture the causal interdependencies between factors at different system levels (regulation, organization, technical and individual) and their effects on safety outcomes. Various tests were conducted to build confidence in the model's usefulness to understand safety problems facing small companies from a system dynamics view. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

An Experimental Study on the Flexural Behavior for the Slabs using the Suspending Deck plate (매닮 데크플레이트를 이용한 슬래브의 휨거동에 관한 연구)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The purpose of the this paper is experimentally to investigate flexural behavior of slabs with suspending the deck plate. The main experimental parameters are the depth and thickness of the deck plate, slab span, rebar and support conditions. Total number of six specimens were tested and manufactured in slabs under vertical load. Based on the results of the test, the flexural behavior for slabs is determined according to the vertical deformation of the slabs, regardless of the main experimental parameters. Bending rebar reinforcement in the rib cross-section specimens can be evaluated significantly higher initial stiffness, crack stiffness and flexural strength. Result of the comparison of the theory value appeared to be fairly well matched to average 1.05.

A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis (현장시험과 수치해석을 통한 수평지반반력계수 산정에 관한 연구)

  • Kang, Byungyun;Park, Minchul;Lee, Sihyung;Jang, Kisoo;Koo, Jagap;Park, Kyunghan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.5-15
    • /
    • 2016
  • For achieving stability and economic construction at a retaining wall construction site, quantitative parameters of soil properties with excavation steps coincides with the actual field site. The main parameters of retaining wall design such as deformation modulus and modulus of horizontal subgrade reaction are common with N value of standard penetration test. Therefore, this study is compared and analyzed about the mutual relationship which is SPT, PBT and PMT for overcoming inconsistency of the existing retaining wall design generalized. In addition, modulus of horizontal subgrade reaction and reduction factor with excavation steps are proposed through back analysis of elasto-plasticity and finite element method with actual field monitoring data. Finally, it is purpose that parameter errors are reduced for applying effective retaining wall design at a construction small and medium-sized.

Experimental evaluation of the effects of cutting ring shape on cutter acting forces in a hard rock (커터 링의 형상에 따른 디스크커터 작용력의 실험적 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.225-235
    • /
    • 2013
  • Cutter forces acting on a disc cutter in TBM are the key parameters for TBM design and its performance prediction. This study aimed to experimentally evaluate cutter forces with different ring shapes in a hard rock. The stiffness of a cutter ring was indirectly estimated from a series of full-scale linear cutting tests. From the experiments, it was verified that the rolling stress acting on a V-shape disc cutter was much higher than on a CCS disc cutter even though the penetration depth by a V-shape disc cutter could be increased in the same cutting condition. Finally, it is suggested that a prediction model considering the shape parameters of a disc cutter should be used for its better prediction.