• Title/Summary/Keyword: construction parameters

Search Result 2,406, Processing Time 0.028 seconds

APPLICATION OF FUZZY LINEAR PROGRAMMING FOR TIME COST TRADEOFF ANALYSIS

  • Vellanki S.S. Kumar;Mir Iqbal Faheem;Eshwar. K;GCS Reddy
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.69-78
    • /
    • 2007
  • In real world, the project managers handle conflicting goals that govern the use of resources within the stipulated time and budget with required quality and safety. These conflicting goals are required to be optimized simultaneously by the project managers in the framework of fuzzy aspiration levels. The fuzzy linear programming model proposed herein helps project managers to minimize total project costs, completion time, and crashing costs considering indirect costs, contractual penalty costs etc by practically charging them in terms of direct cost of the project. A case study of bituminous pavement under construction is considered to demonstrate the feasibility of applying the proposed model for optimization of project parameters. Consequently, the proposed model yields an efficient compromise solution and the decision maker's overall degree of satisfaction with multiple fuzzy goal values. Additionally, the proposed model provides a systematic decision-making framework, enabling decision maker to interactively modify the fuzzy data and model parameters until a satisfactory solution is obtained. The significant characteristics that differentiate the proposed model with other models include, flexible decision-making process, multiple objective functions, and wide-ranging decision information.

  • PDF

APPLICATION OF VISUALLISP PROGRAMMING LANGUAGE TO 3D SLUICE MODELING

  • Nguyen Thi Lan Truc;Po-Han Chen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.337-345
    • /
    • 2007
  • Nowadays, it is convenient to use 3D modeling tools for general planning before construction. Normally, a 3D model is built with 3D CAD such as 3D Studio Max, Maya, etc. or simply with AutoCAD. All these software packages are effective in building 3D models but difficult to use, because many provided functions and tools require prior knowledge to build both 2D and 3D designs. Moreover, the traditional method of building 3D models is most time-consuming as experienced operators and manual input are required. Therefore, how to minimize the building time of 3D models and provide easy-to-use functions for users who are not familiar with 3D modeling becomes important. In this paper, the VisualLISP programming language is used to create a convenient tool for efficient generation of 3D components for the AutoCAD environment. This tool will be demonstrated with the generation of a 3D sluice, an artificial passage for water fitted with a valve or gate to stop or regulate water flow. With the tool, users only need to enter the parameters of a sluice in the edit box and the 3D model will be automatically generated in a few seconds. By changing parameters in the edit box and pressing the "OK" button, a new 3D sluice model will be generated in a short while.

  • PDF

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

Estimation of geomechanical parameters of tunnel route using geostatistical methods

  • Aalianvari, Ali;Soltani-Mohammadi, Saeed;Rahemi, Zeynab
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.453-458
    • /
    • 2018
  • Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Numerical simulations of progression of damage in concrete embedded chemical anchors

  • Sasmal, S.;Thiyagarajan, R.;Lieberum, K.H.;Koenders, E.A.B.
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.395-405
    • /
    • 2018
  • In this paper, the performance of post-installed adhesive bonded anchor embedded in concrete is assessed using numerical simulations. This study aims at studying the influence of parameters on the performance of a chemically bonded anchorage system. Non-linear finite element modelling and simulations are carried out by properly using the material properties and phenomenon. Materials parameters such as characteristic length, fracture energy, damage criteria, tension retention and crack width of concrete and interface characteristics are carefully assigned so as to obtain a most realistic behaviour of the chemical anchor system. The peak strength of two different anchor systems obtained from present numerical studies is validated against experimental results. Furthermore, validated numerical models are used to study the load transferring mechanism and damage progression characteristics of various anchors systems where strength of concrete, strength of epoxy, and geometry and disposition of anchors are the parameters. The process of development of strain in concrete adjacent to the anchor and energy dissipated during the course of damage progression are analysed. Results show that the performance of the considered anchorage system is, though a combined effect of material and geometric parameters, but a clear distinction could be made on the parameters to achieve a desired performance based on strength, slip, strain development or dissipated energy. Inspite the increase in anchor capacity with increase in concrete strength, it brings some undesirable performance as well. Furthermore, the pullout capacity of the chemical anchor system increases with a decrease in disparity among the strength of concrete and epoxy.

Pullout Parameter According to the Length of Spreading of Extensible Geogrid Reinforcement (신장성 지오그리드 보강재의 포설길이에 따른 인발정수)

  • Park, Jong-Beom;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.241-249
    • /
    • 2017
  • In a reinforced soil structure, the interaction between soil and an reinforcement occurs due to the frictional resistance on the contact surface between them or the pullout resistance of the reinforcement. Generally, a pullout test is conducted to measure pullout parameters of extensible geogrids. The factors affecting the pullout parameters in a pullout test include a density of backfill, shape of reinforcements, overburden pressure, length of spread reinforcements, and so on. The purpose of this study is to suggest a length of the spreading of an extensible reinforcement that can be used in estimating suitable pullout parameters of a pullout test. To this end, a pullout test was carried out. For the test, the length of spreading of an extensible reinforcement was set as 32 cm, 52 cm, 72 cm, and 100 cm, and effects of the lengths on pullout parameters were analyzed. As a result of the pullout test, it was confirmed that the frictional resistance between the soil and the reinforcement increases with the increase of the length of the reinforcement.

Analysis on the Relationship of Soil Parameters of Marine Clay (해성점토의 토질정수 상관성 분석)

  • Heo, Yol;Yun, Seokhyun;Jung, Keunchae;Oh, Seungtak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.37-45
    • /
    • 2008
  • Normally consolidated and slightly overconsolidated soft clay layer is widely distributed in the south coast of Korea. To ensure the efficient and economical construction design of any structure to be built on this soft soil, exhaustive studies are required related to geotechnical engineering properties. In this study, the relationship of the physical properties of southern marine clay in the Korea Peninsula were examined, including natural water content, specific gravity, total unit weight, initial void ratio, liquid limit, plastic limit, and physical properties of activity and soil parameters. For the parameter relationship analysis, the latest relatively reliable data on the large harbor construction work were used, optimum values were deducted with linear regression and non-linear regression between soil parameters, water content or initial void ratio appears to be very large. Moreover, in the linear and involution pattern regression, equal coefficient of determination appeared. The relationship of the different parameters was shown to be excellent in the non-linear regression of involution equation and exponential equation pattern compared with the findings of linear regression analysis.

  • PDF

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.