• Title/Summary/Keyword: construction materials

Search Result 5,337, Processing Time 0.039 seconds

A Study on the Historical Values of the Changes of Forest and the Major Old Big Trees in Gyeongbokgung Palace's Back Garden (경복궁 후원 수림의 변화과정 및 주요 노거수군의 역사적 가치규명)

  • Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.1-13
    • /
    • 2022
  • This paper examined the history and development of Gyeongbokgung Palace's back garden based on historical materials and drawings such as Joseon Ilgi(Diaries of Joseon Dynasty), Joseon Wangjo Sillok(the Annals of the Joseon Dynasty), Doseongdaejido(the Great Map of Seoul), Bukgwoldohyeong(Drawing Plan of the Northern Palace), the Bukgung Palace Restoration Plan, Restoration Planning of Gyeongbokgung Palace and the following results were derived. First, it was confirmed that the Back Garden of Gyeongbokgung Palace was famous for its great location since the Goryeo Dynasty, and that it was named Namkyeong at that time and was a place where a shrine was built, and that castles and palaces were already built during the Goryeo Dynasty under the influence of Fengshui-Docham(風水圖讖) and Zhouli·Kaogongji(周禮考工記). Although the back garden of Gyeongbokgung Palace in the early Joseon Dynasty stayed out of the limelight as a back garden for the palace, it has a place value as a living space for the head of the state from King Gojong to the present. Second, in order to clearly identify the boundaries of back garden, through literature such as map of Doseongdo (Map of the Capital), La Coree, Gyeongmudae Area, Japanese Geography Custom Compendium, Korean Photo Album, JoseonGeonchukdoJip(The Illustration Book of Joseon Construction), Urban Planning Survey of Gyeongseong, it was confirmed that the current Blue House area outside Sinmumun Gate was built outside the precincts of Gyeongbokgung Palace. It was found that the area devastated through the Japanese Invasion of Korea in 1592, was used as a space where public corporations were combined through the process of reconstruction during the King Gojong period. In Japanese colonial era, the place value as a back garden of the primary palace was damaged, as the palace buildings of the back garden was relocated or destroyed, but after liberation, it was used as the presidential residence and restored the place value of the ruler. Third, in the back garden of Gyeongbokgung Palace, spatial changes proceeded through the Japanese Invasion and Japanese colonial era. The place with the greatest geographical change was Gyeongnongjae area, where the residence of the Japanese Government-General of Korea was built, and there were frequent changes in the use of the land. On the other hand, the current Gyeongmudae area, the forests next to the small garden, and the forests of Baekak were preserved in the form of traditional forests. To clarify this, 1:1200 floor plan of inner Gyeongmudae residence and satellite images were overlapped based on Sinmumun Gate, and as a result, it was confirmed that the water path originating from Baekak still exists today and the forest area did not change. Fourth, in the areas where the traditional forest landscape was inherited, the functional changes in the topography were little, and major old-age colonies are maintained. The old trees identified in this area were indicator tree species with historical value. Representatively, Pinus densiflora for. multicaulis Uyeki, located in Nokjiwon Garden, is presumed to have been preserved as one of Pinus densiflora for. multicaulis Uyeki planted next to Yongmundang, and has a historicality that has been used as a photo zone at dinners for heads of state and important guests. Lastly, in order to continuously preserve and manage the value of Gyeongbokgung Palace in Blue House, it is urgent to clarify the space value through excavation of historical materials in Japanese colonial era and establish a hierarchy of garden archaeology by era. In addition, the basis for preserving the historical landscape from the Joseon Dynasty to the modern era from Gyeongbokgung Palace should not damage the area of the old giant trees, which has been perpetuated since the past, and a follow-up study is needed to investigate all the forests in Blue House.

Determination of Optimized Operational Parameters for Photocatalytic Oxidation Reactors Using Factorial Design (요인분석법을 이용한 광촉매 산화반응조의 최적 운영인자 도출)

  • Hur, Joon-Moo;Cheon, Seung-Yul;Rhee, In-Hyoung;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of this study is to determine the optimum conditions of operational parameters using factorial design for phenol degradation in photocatalytic oxidation reactors. Factorial design is widely used to select the dominant factors and their ranges in experiments involving several factors where it is necessary to study the effect of factors on a response. The effects of initial concentration of phenol, intensity of UV light and surface area of catalyst on phenol degradation were investigated. Two levels were considered in this study so that the experiment was a $2^3$ factorial design with three replicates. The experimental results show that an increase in initial concentration of phenol from 5 to 50 mg/L intensity of UV light from 5,000 to $20,000\;{\mu}W/cm^2$, and surface area of catalyst from 740 to $2,105\;cm^2$ enhanced the phenol degradation rate by an average of 1.86, 1.79, and 2.10 mg/L hr, respectively. Interaction effects do not appear to be as large on the phenol degradation rate as the main effects of single factors. The optimum working condition for photocatalytic oxidation reactors, despite the higher three factors the better removal rate, is the highest surface area or catalyst.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Evaluation on Functional Assessment for Fish Habitat of Underground type Eco-Artificial Fish Reef using the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) (생물보전지수(IBI) 및 서식지 평가지수(QHEI)를 활용한 지하 매립형 방틀둠벙의 어류 서식처 기능 평가)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Kwon, Jae Hyeong;Song, Ho Myeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.565-575
    • /
    • 2011
  • The purpose of this study was to quantitatively evaluate the expression of both multi-metric qualitative habitat evaluation index (QHEI) and biological integrity index (IBI) for artificial structures eco-artificial fish reef (EAFR) for fishes asylum and habitat. Especially, both experimental evaluation and biological verification were performed in Water and Environmental Center's outdoor test-bed of Korea Institute of Construction Technology located in Andong-city, Gyeongsangbuk-do. The experimental conditions reflecting the situation of domestic river include the flow rate (e.g., $0.0{\sim}1.5m\;s^{-1}$), the width (e.g., 1.0~3.0 m), the depth (e.g., 0.05~0.70 m), and variable bed materials. Both QHEI and IBI were monitored for 8 months from May to December 2010. Whereas QHEI values were highest at experimental points of the E~F with an average of 83.1, those were lowest at B~C with an average of 78.1. However, QHEI values inside EAFR were more than 98.9, regardelss of space and time, and indicated more than the highest good of the state (Good) in the habitat. Overally, IBI values showed similar trend with QHEI, but were 44.2 in the winter dry season, compared to 32.8 of QHEI values. IBI values Also, IBI values inside EAFR were greater than those at the experimental channel by 5.7 to 11.4% and 18.7 to 34.8% in flow and stagnant conditions, respectively, indicating that EAFR can secure asylum and habitat for fish during the dry season. For comprehensive aquatic ecosystem assessment, the experimental channel showed generally fair conditions (Fair~Good), whereas EAFR showed good conditions (Good), suggesting that EAFR can be applied to aquatic ecosystem restoration and improvement.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.

Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System (구동팬텀 시스템에 의한 움직이는 장기의 선량분포 분석)

  • Kim, Yon-Lae;Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Lee, Gui-Won;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purpose: Few researches have been peformed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. Materials and Methods: A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of $1.14g/cm^3,\;0.32g/cm^3$ respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose ditrbutions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Results: Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distrbutions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. Conclusion: The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles have more fluctuation at Gafchromic EBT. If the multipurpose phantom and moving device are used for treatment Q.A, and its corrections are made, treatment quality should be improved for the moving organs.

  • PDF

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

Attenuation of High-Frequency P and S Waves in the Crust of Eastern Part of Choongchung Provinces (충청 동부지역 지각의 P, S파 감쇠 분석)

  • Kyung, Jai-Bok;Kim, Kyu-Dong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.684-690
    • /
    • 2003
  • Recently Choongchung provinces in the central part of South Korea have received increasing attention because of the newly Planned administrative capital construction. In this area, a seismic network of Korea National University of Education has been installed since September 1996, and analyzed Q$_P^{-1}$ and Q$_S^{-1}$ by the extended Coda normalization method based on 60 events recorded by 2 stations of the network. To compensate for insufficient data, we combined the data from 33 events observed at 1 of the stations of the network of Korea Institute of Geology, Mining & Materials. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ showed frequency dependence that decrease from (1.9${\pm}$3.0)${\times}$10$^{-3}$ and (2.4${\pm}$1.4)${\times}$10$^{-3}$ at 3.0 Hz to (5.4${\pm}$1.5)${\times}$10$^{-4}$ and (6.3${\pm}$1.1)${\times}$10$^{-4}$ at 24 Hz, respectively. Using a power law dependent on frequency, the best fit of Q$_P^{-1}$ and Q$_S^{-1}$ are 0.003f$^{-0.62}$ and 0.006f$^{-0.71}$ respectively. These values correspond to those of seismically stable regions, and are slightly less dependent on frequency than those of the southeastern part of Korea due to high Q$^{-1}$ values in high frequencies. Further observations are required in the central part of S. Korea to evaluate the difference of Q$^{-1}$ between central and southeastern parts of S. Korea.

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.