• Title/Summary/Keyword: construction joint

Search Result 1,121, Processing Time 0.026 seconds

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Work-Family Conflict and Counterproductive Behavior of Employees in Workplaces in China: Polynomial Regression and Response Surface Analysis

  • JIANG, Daokui;CHEN, Qian;NING, Lei;LIU, Qian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.6
    • /
    • pp.95-104
    • /
    • 2022
  • This study investigates the complex mechanism of work-family conflict affecting counterproductive behavior of employees based on resource conservation theory and 417 valid samples by using polynomial regression and response surface analysis. Counterproductive work behavior refers to any intentional behavior of an individual that has potential harm to the legitimate interests of the organization or its stakeholders. Results show that first, work-to-family conflict (WFC) and family-to-work conflict (FWC) had four matching types. Compared with "high WFC-low FWC," "low WFC-high FWC" and "low WFC-low FWC" matching conditions, the employee self-control resource depletion and counterproductive work behavior (CWB) are at their highest under "high WFC-high FWC" congruence matching condition. Second, the joint effect of WFC and FWC has a U-shaped relationship with counterproductive behavior. Compared with the "high WFC-low FWC" match state, the level of CWB in the "low WFC-high FWC" match state is higher. Third, the depletion of self-control resources played a mediating role in the effect of WFC on counterproductive behavior. Fourth, emotional intelligence moderated the relationship between the congruence of WFC and FWC and self-control resource depletion. Emotional intelligence was higher, and the positive relationship between the congruence of WFC and FWC and self-control resource depletion was weaker.

Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate (연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능)

  • Cho, Chang Geun;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

A Comparative Study on the Correlation the Wooden Structure Between Traditional Korean Architecture and Traditional Korean Ships - Focusing on the Ships of the Goryeo-sun - (전통 건축과 선박의 목구조 상관 관계 비교 연구 - 고려선을 중심으로 -)

  • Kim, Ra-Nee;Han, Dong-Soo
    • Journal of architectural history
    • /
    • v.31 no.6
    • /
    • pp.7-16
    • /
    • 2022
  • Traditional Korean architecture and traditional ships maintained a close relationship with carpenters and tools because wood, the material, was common. This close relationship may have been from the time of ancient architecture and ancient ships. In previous studies, researchers proved the relationship between these two sides through historical records of traditional architecture and traditional ships. This study attempts to prove the structural association using existing remains. As a result, three structural similarities between traditional architecture and traditional ships could be found. First, the types of wood used are similar, and the tools and terms used are similar. Second, the method of distinguishing horizontal and vertical materials and the structure of wood and the method of forming wood are similar. Lastly, the ship carpenters mobilized for the construction of the palace mainly worked on long and curved materials such as the eaves and the ridge of a roof, because this was the work done when the ship was built. Therefore, it can be assumed that the roof structure they created resembles that of the ship.

Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology

  • Adibi, Mahdi;Talebkhah, Roozbeh
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.55-67
    • /
    • 2022
  • The precast reinforced concrete frame system is a method for industrialization of construction. However, the seismic performance factor of this structural system is not explicitly clarified in some existing building codes. In this paper, the seismic performance factor for the existing precast concrete building frame systems with cast-in-situ reinforced shear walls were evaluated. Nonlinear behavior of the precast beam-column joints and cast-in-situ reinforced shear walls were considered in the modeling of the structures. The ATC-19's coefficient method was used for calculating the seismic performance factor and the FEMA P-695's approach was adopted for evaluating the accuracy of the computed seismic performance factor. The results showed that the over-strength factor varies from 2 to 2.63 and the seismic performance factor (R factor) varies from 5.1 to 8.95 concerning the height of the structure. Also, it was proved that all of the examined buildings have adequate safety against the collapse at the MCE level of earthquake, so the validity of R factors was confirmed. The obtained incremental dynamic analysis (IDA) results indicated that the minimum adjusted collapse margin ratio (ACMR) of the precast buildings representing the seismic vulnerability of the structures approximately equaled to 2.7, and pass the requirements of FEMA P-695.

Wind-and-flip technique for the fabrication of a persistent mode superconductive magnet by using a coated conductor

  • Lee, Hee-Gyoun;Kim, Jae-Geun;Kim, Woo-Seok;Lee, Seung-Wook;Choi, Kyeong-Dal;Hong, Gye-Won;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2007
  • Persistent mode HTS pancake coil has been fabricated using a coated conductor by a "wind-and-flip" method. A coated conductor with the length of 1.2 meters was divided at the center along the length. The sliced coated conductor was wound on a pair of bobbins with a diameter of around 4 cm and two pancake coils connected superconductively without a resistive joint were prepared. By flipping one of the pancake coils, the magnetic field generated by each coil is to be aligned to the same direction and generate meaningful magnetic field while the magnetic fields of two spit coils are canceled without flipping. Permanent current was induced by flowing current to the coil immersed in liquid nitrogen pool using a power supply. A magnetic field of 48.8 Gauss was generated when 20 A of current was flowing in the pancake coils. The "Wind and flip" method can be applied for the fabrication of a long solenoid magnet by winding a sliced coated conductor on a cylindrical bobbin. It is also introduced that the construction of multiple sets of pancake (or solenoid) coils is possible by a "wind-and-flip" method using a wide coated conductor.

Two-Demensional Nonlinear Analysis of Precast Segmental PSC-I Girder with Wet Joint (습식접합부를 갖는 프리캐스트 세그먼트 PSC-I형 거더의 2차원 비선형해석)

  • Kim, Kwang-Soo;Hong, Sung-Nam;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.103-112
    • /
    • 2007
  • The purpose of this study is to evaluate the characteristics of the structural behavior in precast segmental prestressed concrete girders, which consist of five precast segments. These girders were developed to save labor and cost in construction field reducing a term of work. Therefore, four different types of specimens of 25m in length were built, and they were tested and analyzed for observing flexural behavior. The analysis included the investigation of the flexural behaviors in varying tendon amount and at joints using the relationship between moment and deflection. Moreover, nonlinear finite element analysis was utilized to verify the experimental result.

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.

A Study on the Characteristics of Behavior of Block-type Reinforced Earth Retaining Wall Considering Failure Surface (파괴면을 고려한 블록식 보강토 옹벽의 거동 특성 연구)

  • Yoon, Won-Sub;Park, Jun-Kyu;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.13-26
    • /
    • 2016
  • In this study, more economical than conventional reinforced soil retaining walls, we compared the behavior characteristic about the safety block type numerically for reinforced retaining wall. In this study, reinforced soil retaining wall, first, was integrated a wall putting shear key on the blocks. Second, construction reinforcement focused on the theoretical failure surface was satisfied with the stability of a retaining wall reinforced by a shear plane. when analyzing, element of using reinforcement was carried out a numerical analysis for the cable element and the strip element, and they were analyzed under the conditions according to the stiffener length, distance, with or without shear key. Analysis for the integration of the front wall was reinforced soil retaining walls by installing a larger displacement shear key confinement effect, if reinforced construction and reinforcement with 1 interval and 2 interval, the failure surface was bigger displacement constraints. Generating a deformation amount was smaller than the generation amount of deformation accrued during construction of AASHTO so that it was stable.