• Title/Summary/Keyword: construction accidents

Search Result 1,198, Processing Time 0.026 seconds

Accuracy Evaluation of 3D Slope Model Produced by Drone Taken Images (드론 촬영으로 작성한 비탈면 3차원 모델의 품질 분석)

  • Kang, Inkyu;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.13-17
    • /
    • 2020
  • In the era of the fourth industrial revolution, drones are being used in various civil engineering fields. Currently, the construction and maintenance of slopes are generally managed by manpower. This method has a risk of safety accidents, and it is difficult to accurately evaluate the slope because it is difficult to secure the vision. In this paper, the effects of RTK and GCP on the 3D model of the slope were studied by using digital images taken by the drone. GNSS coordinates were measured for nine points to compare the quality of the slope 3D model, three points of which were used as the check points and the remaining points were used as GCPs. When making the 3D model of the slope using high-accuracy geotagging images using RTK, it was found that the error at the check point decreases as the number of GCP increases. Even if GNSS was used, it was found that the error at the check points of the 3D slope model was not significant when the GCPs were applied. However, it was found that even if high-accuracy geotagging images are used using the RTK module, a significant error occur when the 3D slope model is created without applying GCPs. Therefore, it can be stated that GCP must be applied to create the 3D slope model in which information about the height as well as plane information is important.

A Study on Residual Strength Assessment of Damaged Oil Tanker by Smith Method (Smith법에 의한 손상 유조선의 잔류강도 평가 연구)

  • Ahn, Hyung-Joon;Baek, Deok-Pyo;Lee, Tak-Kee
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.823-827
    • /
    • 2011
  • The present Common Structural Rules for double hull oil tanker is not included the residual strength, which is one of the functional requirements in design part of Goal-based new ship construction standards (GBS). The GBS will be enforced after July 1, 2016. The requirement related residual strength has the goal to build safe ship even if she has the specified damages due to marine accidents including collision and grounding. In order to assess the residual strength based on risk for structural damages according to GBS, tons of nonlinear FE analysis work taking into account various types of damage will be needed. The Smith's method, a kind of simplified method for the strength analysis is very useful for this purpose. In this paper, the residual strength assessments based on ultimate strength using Smith's method were carried out. The objected ship is VLCC with stranding damage in bottom structures. Also, the results were compared with that of nonlinear FE analysis using three cargo hold model.

Studies on the Press Drying and the Chemical Absorption of the Plywood Treated with Diammonium Phosphate (제2인산(第2燐酸)암모늄 처리합판(處理合板)의 약제흡수(藥劑吸收) 및 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.39-45
    • /
    • 1995
  • The plywoods commonly used as decorative interior materials for the construction are inflammable and so it is a causative factor for making fire accidents, resulting in the destruction of human life and personal properties. Indeed, it is, therefore, required to produce fire-retardant plywoods. In this study, a special grade of defect-free, Kapur plywood was used. Specimens were cut into 3- by 20cm dimensions from 120- by 240- by 0.33-cm panels(thin panel) or 120- by 240- by 0.5-cm panels(thick panel). Some specimens were treated with diammonium phosphate(DAP), but some were not treated with diammonium phosphate to use as control panels. Chemical absorption, drying curves, drying rates and dynamic Young's modulus were investigated. The results were summaries as follows; 1. The specimens were soaked into 19% diammonium phosphate solution by a full cell pressure process and the diammonium phosphate retained in the thin and thick plywoods was 1.409kg/$(30cm)^3$, 1.487kg/$(30cm)^3$, respectively. 2. Diammonium phosphate-treated plywoods were redried with press-drying process at one of either condition dried on the platen($115^{\circ}C$) for a period of time or dried on the platen($50^{\circ}C$) for 3 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. or dried on the platen($60^{\circ}C$) for 2 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. The drying rate of treated thin specimens dried at $60^{\circ}C$ plus $30^{\circ}C$ and $115^{\circ}C$ only was found to be 0.04 %/min. and 8.53 %/min. Similarly, the drying rate of treated thick specimens were 0.03 %/min. and 6.77 %/min. respectively. 3. It was evident that highly-significantly different drying rate of treated plywoods was observed between plywood thicknesses and platen temperatures and the rate was increased by elevating the platen temperature up to $115^{\circ}C$. Based on the two-way variance analysis, highly significant drying rate was observed from the interaction between plywood thicknesses and platen temperatures. 4. After redrying, the specimens were weighed and reconditioned to a constant weight in a facility maintained temperature ($20^{\circ}C$) and relative humidity(65%) prior to test dynamic Young's modulus. The test revealed that the thin specimens dried at the platen temperature of $50^{\circ}C$, $60^{\circ}C$, $115^{\circ}C$ and untreated specimens showed 1.070E+09 dyne/$cm^2$, 1.156E+09 dyne/$cm^2$, 1.243E+09 dyne/$cm^2$, and 1.052E+09 dyne/$cm^2$, respectively. Likewise, the thick specimens revealed 5.647E+09 dyne/$cm^2$ 5.670E+09 dyne/$cm^2$, 6.395E+09 dyne/$cm^2$ and 5.415E+09 dyne/$cm^2$, respectively. 5. It was evident that significantly different dynamic Young's modulus was observed between the plywood thickness and the platen temperature, but not in the two-way interaction between the plywood thickness${\times}$the platen temperature.

  • PDF

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

A Study on Improving the Efficiency of the Survival Rate for the Offshore Accommodation Barge Resident Using Fire Dynamic Simulation (화재시뮬레이션을 이용한 해양플랜트 전용생활부선 거주자의 생존율 향상에 대한 연구)

  • Kim, Won-Ouk;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.689-695
    • /
    • 2015
  • The offshore plant crews that were commissioned in the commercial startup phase boarded the offshore plant in two shifts until the end of the project. The crews who were hired by the owner side stayed in the original offshore plant during the project. However, most of the offshore plant commissioned members who were dispatched from the shipyard were accommodated in the offshore accommodation barge. For this reason, they were exposed to many accidents since there are a lot of people staying in a small space. This study suggested a method for improving survival rate at offshore accommodation barge in terms of life safety. It is assumed that the fire accident among unfortunate events which take place in the offshore accommodation barge mainly occurred. So, this study analyzed the safety evacuation for offshore plant employees using fire simulation model based on both domestic and international law criteria. In particular, When fire occurs in the offshore accommodation barge, the periodically well trained crews are followed safety evacuation procedure. whereas many employees who have different background such as various occupations, cultural differences, races and nationality can be commissioned with improper evacuation behaviors. As a result, the risk will be greater than normal situation due to these inappropriate behaviors. Therefore, This study analyzed the Required Safe Escape Time (RSET) and Available Safe Escape Time (ASET). Also it was suggested the improvement of structure design and additional arrangement of safety equipment to improve the survival rate of the residents in offshore accommodation barge.

Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation (수치모의를 통한 해운대 이안류에 대한 해상요소의 영향 연구: 파주기, 파고, 파향, 조위)

  • Choi, Junwoo;Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.205-218
    • /
    • 2013
  • The likelihood of rip current at Haeundae beach according to wave parameters, such as wave height, period, direction, and tidal elevation, was estimated by using numerical simulations with a Boussinesq model, FUNWAVE. To examine the estimation, the rip current occurred on 12th June, 2011 at Haeundae beach was simulated based on observations. For the estimation, the following procedure was carried out. First, extensive numerical simulations of nearshore circulations are performed under various random sea conditions according to the wave parameters. Second, from the numerical results, cross shore components of two-wave-period averaged velocities over the nearshore area were computed, and their seawardly maximum was defined as rip current velocity of the area. Third, using time series of the rip current velocity, we computed the ratio of the simulation time and the time period in which the rip current velocity exceed a threshold velocity for rip-current accidents, and thus the ratio was quantified as the likelihood of rip current at Haeundae beach for the input wave parameters. From the resultant estimations, it was found that the rip current likelihood increases as wave height and period increase, and tidal elevation decreases.

Towards Safety Based Design Procedure for Ships

  • Bakker, Marijn;Boonstra, Hotze;Engelhard, Wim;Daman, Bart
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Present-day rules and regulations for the design and construction of ships are almost without exemption of a prescriptive and deterministic nature. Often it is argued that this situation is far from ideal; it does no right to the advances, which have been made during the past decades in engineering tools in marine technology, both in methodology and in computational power. Within IMO this has been realized for some time and has resulted in proposals to use Formal Safety Assessment(FSA) as a tool to improve and to modernize the rule making process. The present paper makes use of elements of the FSA methodology, but instead of working towards generic regulations or requirements, a Risk Assessment Approach, not unlike a 'safety case'; valid for a certain ship or type of ship is worked out. Delft University of Technology investigated the application of safely assessment procedures in ship design, in co-operation with Anthony Veder Shipowners and safety experts from Safely Service Center BV. The ship considered is a semi-pressurized-fully refrigerated LPG carrier. On the basis of the assumption that a major accident occurs, various accident, scenarios were considered and assessed, which would impair the safety of the carrier. In a so-called Risk Matrix, in which accident frequencies versus the consequence of the scenarios are depicted, the calculated risks all appeared lo be in the ALARP('as low as reasonable practicable') region. A number of design alternatives were compared, both on safety merits and cost-effectiveness. The experience gained with this scenario-based approach will be used to establish a set of general requirements for safety assessment techniques in ship design. In the view that assessment results will be most probably presented in a quasi-quantified manner, the requirements are concerned with uniformity of both the safety assessment. These requirements make it possible that valid comparison between various assessment studies can be made. Safety assessment, founded on these requirements, provides a validated and helpful source of data during the coming years, and provides naval architects and engineers with tools experience and data for safety assessment procedures in ship design. However a lot of effort has to be spent in order to make the methods applicable in day-to-day practice.

  • PDF

A Study on the Confirmation of non-flammabikity of the Cast Resin Mold Transformer in Subway Substation (지하철 변전실용 진공주형형 몰드변압기의 난연성 확인에 관한 연구)

  • 정용기;장성규;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • This dissertationhas confirmed the non-flam mability of cast mold transformer that is increasingly used lately. As a research progress, the investigation has been performed on the installation status and each line of the subway system which have the most mold transformer accidents, and the impediment status of the transformer for rectifier and the high-voltage distribution transformer per each manufacturer. Then, a high voltage mold of the actual mold transformer has been installed in the horiwntal heating furnace and the heat has been applied by the standard heating temperature curve of KSF 2257(Fireproof testing meth od of the construction structures: 1993). Accordingly, the combustibility of the mold transformer based on the test results has been found that 78 minutes has been required for the complete burning per the KSF 2257 combustion test curve and that, after stopping the heat application of the horizontal furnace after ignition, the flame progress has not been made but shown as the self-extinguishing characteristics when the flame progress has been checked. Thus, the non-flammability and self-extinguishability of the mold transformer have been confirmed. The result of this dissertation has indicated that the accident involving mold transformer has been progressed and expanded by the dielectric breakdown or void due to the crack in the mold rather than a fire accident caused by a short-circuit or an overload.r an overload.

  • PDF