• Title/Summary/Keyword: constitutive forms

Search Result 27, Processing Time 0.021 seconds

Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals (Part2:Analysis) (알루미늄 합금박판 비등온 성형공정의 유한요소 해석 및 실험적 연구 (제2부:해석))

  • 김성민;구본영;금영탁;김종호
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 1999
  • The 3-dimensional finite element program is developed to analyze the non-isothermal forming processes of aluminum-alloy sheet metals. Bishop's method is introduced to solve the heat balance and force equilibrium equations. Also, Barlat's non-quadratic anisotropic yield function depicts the planar anisotropy of the aluminum-alloy sheet. To find an appropriate constitutive equation, four different forms are reviewed. For the verification of the reliability of the developed program, the computational try-outs of the non-isothermal cylindrical cupping processes of AL5052-H32 and Al1050-H16 are carried out. As results, the constitutive equation relating to strain and strain-rate, in which the constants are represented by the 5th-degree polynomials of temperature, is in good agreement with measurement. The computational try-outs can predict optimal forming conditions in non-isothermal forming processes.

  • PDF

Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study

  • Kmet, S.;Holickova, L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.591-607
    • /
    • 2004
  • The substance of the use of the derived non-linear creep constitutive equations under variable stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to investigate the creep strain increments of cables an experimental set-up was originally designed and a series of tests were carried out. Attention is turned to the individual main steps in the production and application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel functions, selection and definition of constitutive equation and to the comparison of the resulting values considering the product and the additive forms of the approximation of the kernel functions. To this purpose, the parametrical study is performed and the results are presented. The constitutive equations of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of stochastic variable load history and prediction of realistic time-dependent response (current deflection and stress configuration) of structures with cable elements. By means of suitable stress combination and its gradual repeating various loads and times effects can be modelled.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.569-583
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

General stress-strain model for concrete or masonry response under uniaxial cyclic compression

  • La Mendola, Lidia;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.435-454
    • /
    • 2002
  • The paper proposes analytical forms able to represent with very good approximation the constitutive law experimentally deducible by means of uniaxial cyclic compressive tests on material having softening post-peak behaviour in compression and negligible tensile strength. The envelope, unloading and reloading curves characterizing the proposed model adequately approach structural responses corresponding to different levels of nonlinearity and ductility, requiring a not very high number of parameters to be calibrated experimentally. The reliability of the model is shown by comparing the results that it is able to provide with the ones analytically deduced from two reference models (one for concrete, another for masonry) available in the literature, and with experimental results obtained by the authors in the framework of a research in progress.

A simple procedure to simulate the failure evolution

  • Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.601-612
    • /
    • 1996
  • To simulate the large-scale failure evolution with current computational facilities, a simple approach, that catches the essential feature of failure mechanisms, must be available so that the routine use of failure analysis is feasible. Based on the previous research results, a simple analysis procedure is described in this paper for failure simulation. In this procedure, the evolution of localization is represented by a moving surface of discontinuity, and the transition between continuous and discontinuous failure modes are described via the moving jump forms of conservation laws. As a result, local plasticity and damage models, that are formulated based on thermodynamic restrictions, are still valid without invoking higher order terms, and simple integration schemes can be designed for the rate forms of constitutive models. To resolve localized large deformations and subsequent cracking, an efficient structural solution scheme is given for Static and dynamic problems.

The Effects of Wood Rotting Fungi and Laccase on Destaining of Dyes and KP Bleaching Effluen

  • Cho, Nam-Seok;Park, J.M.;Choi, T.H.;Matuszewska, A.;Jaszek, M.;Grzywnowicz, K.;Malarczyk, E.;Trojanowski, K.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.72-79
    • /
    • 1999
  • The ability of several wood rotting fungi for decolorization of two anthracene derivatives, Carminic acid (CA) and Remazol brilliant blue R (RBBR), and hardwood KP bleaching liquor (BL) as well as laccase activities in these fungi were studied. The enzyme activity appeared exclusively in fungi destaining RBBR and CA, but in the case of BL, such relationship was not observed. The laccase enzyme was released into the decolorization media and its inducible (but not constitutive) forms shown destaining activity. The purified inducible forms of Kuehneromyces mutabilis and Pleurotus ostreatus laccase destained CA. Thus the possible differentiation between specificity of particular LAC forms was confirmed. In addition the nitrogen starvation induced both laccase and CA destaining activities, but the increase was higher for decolorization of CA than LAC activity. Probably LAC would be only partly responsible for decolorization of this dye. This results suggested that purified LACs decolorize CA, however its destaining activities were considerably lower than the activities on syringaldazine.

  • PDF

The Relationship Between Love and Justice: Hegel's Theory of Recognition (사랑과 정의의 관계: 헤겔의 인정이론)

  • Seo, Yunho
    • Cross-Cultural Studies
    • /
    • v.52
    • /
    • pp.111-132
    • /
    • 2018
  • The way of approaching 'the relationship between love and justice' varies from person to person. We can argue for superiority of love or for superiority of justice by understanding the relationship between the two as conflicting. We can also argue that we need each other by understanding each other as a complementary relationship rather than an oppositional relationship. Hegel, however, sees love and justice as independent constitutive principles valid in different areas and does not regard the two as opposing nor complementary. This can only be understood when the structure of Hegel's theory of recognition is properly assumed. The relationship between love and justice will be considered mainly in Hegel's theory of recognition. Key philosophical points of Hegel's theory of recognition and consequences drawn on the relationship between love and justice on the basis of the theory will be examined. This can be summarized in the form of a thesis, roughly as follows. - Hegel presents love, justice and solidarity, that are various forms of recognition, to a family, a civil society and a state, that are three forms of social relations, as their constitutive principles. He does not grasp the relationship between love and justice as oppositional nor as complementary, that is different from many people's general perspective on the relationship of the two. - In Hegel's theory of recognition, love and justice differ in the areas in which they are valid. Love is a valid principle in the intimacy, and justice is a valid principle in non-intimacy. So, if justice and rights are asserted in intimacy, the area of intimacy is destroyed. Conversely, if love is asserted in non-intimacy, it cannot exercise real influence. - In the political community such as a state, where intimacy and non-intimacy overlap each other, the principle of solidarity is needed as a new constitutive principle, since a state does not stand on the principle of love as in a family nor on the principle of justice as in a civil society.

Fungal laccases from basidiomycetes and their inducibility (담자균으로부터 생산되는 균체 Laccases 및 이 효소의 유도특성)

  • Leonowicz, Andrzej;Wilkolazka, A.;Rogalski, J.;Kim, Dong-Hoon;Cho, Nam-Seok
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.127-139
    • /
    • 2004
  • Laccases are multicopper-containing enzymes which catalyze the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. They often occur as isoenzymes, either constitutive or inducible, that oligomerize to multilateral complexes, what allow for penetration to the woody cell wall structure. White rot basidiomycete fungi may produce a number of laccase isoenzymes, some constitutively and others after induction. Fungal laccase is commonly induced by many ions, such as $Cu^{2+}$, $Cd^{2+}$ $Ca^{2+}$, $Li^+$, $Mn^{2+}$, $Ag^+$, $Hg^{2+}$, Mn and $Fe^{3+}$, phenolic compounds, some organic compounds, such as ethanol, isopropanol, cAMP, caffeine, p-anisidine, viscosinamide and paraquat, and nitrogens and even heat shock. A combination of Cu and pHB (p-hydroxybenzoic acid) made it possible to extend the inducible laccase activities over 30-fold. But the most effective inducer of laccase in the basidiomycete and other higher fungi is 2,5-xylidine, over 160-fold stimulation of laccase activity. The laccases are frequently encoded by gene families, as e.g. in Pycnoporus cinnabarinus, from which the lcc3-1 or the allelic form lac1 and lac3-2 have been cloned and sequenced. In the case of inducible forms the post-inductional laccase formation depends upon the synthesis of mRNA and the induction is due to the synthesis of a new protein.

  • PDF

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.