• 제목/요약/키워드: constant volume combustion chamber

검색결과 161건 처리시간 0.03초

FIRE Code를 사용한 정적연소기의 메탄-공기 균질 혼합기 연소특성 연구 (A Study on Combustion Characteristics of Methane-air Homogeneous Mixture in a Constant Volume combustion Chamber by FIRE Code)

  • 이석영;허강열
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.28-36
    • /
    • 2006
  • A constant volume combustion chamber was used to investigate the combustion characteristics. of homogeneous charge of methane-air mixture under various initial pressure, equivalence ratio and ignition times. The constant volume combustion chamber(CVCC) mostly has been studied by the experiments of visualization until now. So it is needed the numerical analysis of fluid and combustion characteristics in chamber by the more detail simulation. In this paper, the numerical analysis is tried to approach basically the homogeneous charge combustion phenomena under the various conditions, and the combustion phenomena in chamber is numerically analyzed by the commercial FIRE code. As a results, the combustion phenomena which were mean temperature, OH radical and reaction rate in chamber were investigated and it showed that the smallest flame growth occurs for the lean state and the increase of initial charged pressure condition due to the reduced OH radical.

  • PDF

연소실 초기온도 변화에 따른 순간열유속에 관한 연구 (A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber)

  • 이치우
    • 한국산업융합학회 논문집
    • /
    • 제6권3호
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

부실식 정적연소실내 연소특성에 관한 연구(I) -연락공의 기하학적 형상이 연소에 미 치는 영향- (Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-chamber(I) -Effect of Geometric Configurations of Passagehole on Combustion-)

  • 김봉석;권철홍;류정인
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.66-79
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we have designed a constant volume combustion chamber with sub-chamber. With constant volume ratio of main-sub combustion chamber and constant equivalence ratio of methane-air mixture, the influence of geometric configurations(diameter, injection angle, number, length) of passagehole upon combustion characteristics were studied. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the injection angle and length of passagehole.

  • PDF

연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발 (Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구 (A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel)

  • 조행묵
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

정적 연소실내 혼합기 분포가 연소특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Mixture Distribution in the Constant Volume Combustion Chamber on the Combustion Characteristics)

  • 이기형;이창희;안용흠
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.10-18
    • /
    • 2004
  • It is well known that the stratified charge combustion has many kind of advantages to combustion characteristics, such as higher thermal efficiency and less CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can be caused low fuel consumption, it is produced the high unburned hydrocarbon and soot levels because of different equivalence ratio in the combustion chamber. Moreover it has a lot of possibility of low output and misfire if the mixture gas would not be in existence around the spark plug. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of locally mixture gas distribution according to control the direct injection and premixed injection in the chamber were examined experimentally. In addition, the effects of turbulence on stratified charge combustion process were observed by schlieren photography.

부실붙이 정적연소실의 연소촉진 효과 (The Effect of Combustion Promotion in Constant Volume Combustion Chamber with Sub-chamber)

  • 이상준;김삼석;이종태;이성열
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.569-577
    • /
    • 1992
  • 본 연구에서는 주연소실쪽의 오리피스 근방에서 점화를 하는 부실붙이 연소실 에서 부실의 크기, 오리피스 크기를 변수로 하여 화염분출이 연소에 미치는 영향을 파 악하였다. 또한 이들의 결과를 부실쪽에서 점화하는 경우와 비교하여 주연소실쪽 점 화방식의 화염분출효과를 평가하였다.

돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구 (A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1) (A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1))

  • 박종상;이태원;하종률;정성식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

정적 연소실내의 메탄-공기 혼합기의 연소 특성에 관한 연구 (A Study on the Combustion Characteristics of Methane-air Mixture in Constant Volume Combustion Chamber)

  • 이창식;김동수;오군섭
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.201-209
    • /
    • 1996
  • This study describes the combustion characteristics of methance-air mixture with various equivalence retio and initial conditions of mixture in constant volume combustion chamber. Combustion characteristics of methane-air mixture such as combustion pressure, combustion temperature, and heat release were investigated by the measurement of combustion pressure and temperature in the combustion chamber. The results show that maximum combustion pressure, gas temperature and rate of heat release have peaks at equivalence ratio of 1.1. Combustion duration is also the shortest at the equivalence ratio of 1.1 and it is shortened as initial mixture temperature increases.

  • PDF