• Title/Summary/Keyword: constant velocity

검색결과 1,480건 처리시간 0.027초

마찰을 고려한 이중 오프셋 등속조인트의 축력 해석에 관한 연구 (Analytic Study on the Axial Forces of a Double Offset Constant Velocity Joints in Consideration of Friction Effect)

  • 배병철
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.120-127
    • /
    • 2008
  • The constant velocity joint(CVJ) used for transmitting torque to the front wheels is an important part in automotive drive system. There are several types of constant velocity joints. Typically, they are classified by fixed and plunging constant velocity joints. The axial force generated in plunging constant velocity joints influences significantly the noise, vibration and harshness. For heaps of time, many constant velocity joint markers have been studying and developing a valid method to reduce the axial force and extensive tests have been carried out on rigs. This paper presents the analysis method to predict the axial force of a double offset constant velocity joint(DOJ), a kind of plunging constant velocity joint, and the influence of ball-cage dimension tolerance on the axial force.

등속조인트 방식에 따른 공회전 진동특성 연구 (A Study on the Characteristics of Idle Vibration due to the Type of Constant Velocity Joints)

  • 사종성;신양현;강태원;김찬묵
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-190
    • /
    • 2008
  • This paper deals with the characteristics of idle vibration due to the type of constant velocity joints. Based on the kinematics model of constant velocity joints, a offset between the tripod center and tullip center plays a important role in generating unwelcome forces. Moreover, it induced additional forces in lateral direction of a vehicle movement according to the angle of the spider in idle vibration. The difference of mass for each constant velocity joint types affect the natural frequency of the driveshaft and the powertrain. When the static torque is applied to the constant velocity joints, the natural frequencies of the driveshaft are reduced nearby 50Hz. There will be a big opportunity that the dirveshaft and constant velocity joints would be a transfer path of idle vibration at D or R gear range. Experiments indicate that TJ type is better than SFJ and DOJ in idle vibration.

Computer Simulation of Deformation in a Rubber Boots for Translation and Rotation of CV-joint for Automobile

  • Lee, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제55권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Automobile industry, along with the automobile steering system, is rapidly changing and developing. The constant velocity joint transmits power to the wheels of vehicles without changing their angular velocity based on the movement of the steering wheel. Moreover, it controls their movement to act as a buffer. In order to prevent the excessive increase in temperature caused by the movement of vehicles, boots are attached to the constant velocity joint and lubricant is injected into the boots. The boots maintain the lubrication and protect the constant velocity joint from sand, water, and so on. As the wheels of the vehicle rotate, the boots are acted upon by forces such as bending, compression, and tension. Additionally, self-contact occurs to boots. Therefore, their durability deteriorates over time. To prevent this problem, polychloroprene rubber was initially used however, it was replaced by thermoplastic polyester elastomers due to their excellent fatigue durability. In this study, the structural analysis of boots was conducted. The results showed the deformation patterns of the boots based on the translation and rotation of the constant velocity joint. Moreover, it confirmed the location that was vulnerable to deformation. This study can be used to potentially design high-quality constant velocity joint boots.

저 분해능 엔코더를 사용한 정밀 속도 제어 (Precise Velocity Control at Low Speed with a Low Resolution Encoder)

  • 서기원;강현재;이충우;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.140-142
    • /
    • 2007
  • This paper presents an effective method of precise velocity control at low speed with a low resolution encoder. Multirate observer to estimate the velocity at every DSP control period is used except a constant velocity mode. The observer corrects the estimation error when detects pulse signal. Unlike the conventional methods, the multirate estimator is stable at a low speed. However, the multirate estimator shows ripples at a constant velocity. Thus, in this paper we use a velocity prediction method which uses the present velocity from the previous average velocity to reject the ripple. In a summary, at a constant speed mode, the predicted velocity is used. Otherwise, the estimated velocity by the multirate obvserver is used. The effectiveness of the multirate observer and ripple rejection at low speed is verified through various simulations.

  • PDF

실험계획법을 활용한 승용차용 등속조인트 설계기법 연구 (Study on the Design Methodology of Constant Velocity Joints for Passenger Cars using DOE)

  • 정창현;정도현;배원락
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.121-133
    • /
    • 2008
  • We presented design methodology of constant velocity joint for passenger cars using design of experiment. On the basis of contact normal stress of internal components of constant velocity joints, we performed a sensitivity analysis of several design parameters. And then we performed robust design and optimization design process. As a result, we could find robust design and also propose the optimized design. Presented design process would be very helpful for engineers who are suffer for new constant velocity joint design.

동적모드 I 등변위상태하에서 전파하는 등방성체의 균열해석 (Analysis of Propagating Crack In Isotropic Material under Dynamic Mode I Constant Displacement)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2007-2014
    • /
    • 2000
  • It has been reported that the dynamic stress intensity factor for a propagating crack is increasing or decreasing according to the increasement of the crack propagating velocity. It is confirmed in this study that the increasement or decreasement of stress intensity factor with crack growing velocity is accused by loading condition. When the crack propagates under a constant displacement along upper and lower boundary in finite plate, the dynamic stress intensity factor decreases according to the increasement of the propagating crack velocity. When the crack propagates under a constant stress along upper and lower boundary in finite plate, the dynamic stress intensity factor increases according to the increasement of the propagating crack velocity. The increasement or decreasement of stress intensity factor with crack growing velocity is greater in a fast crack propagation velocity than in a slow one.

길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$ (Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress)

  • 최상인
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

Ascorbic Acid가 Carboxyhemoglobin의 해리속도항수에 미치는 영향 (Influence of Ascorbic Acid on Velocity Constant of Carboxyhemoglobin Dissociation)

  • 심길순
    • 약학회지
    • /
    • 제8권3호
    • /
    • pp.62-68
    • /
    • 1964
  • Author has determined the dissociation velocity constant of carboxyhemoglobin in cattle blood solution by addition of ascorbic acid at $36-38{\deg}.$ It was found that these kinetic data are concordant with Roughton's equation d[COHb]/dt = $m^{'}[CO][O_{2}Hb]/[O_{2}$ - m[COHb] and that the dissociation velocity constant of carboxyhemoglobin was accelerated by the presence of ascorbic acid from 0.119 to 0.135.

  • PDF

고주파 열처리 강에 대한 피로강도에 미치는 경향 (The effect on Fatigue Strength of Induction Hardened Carbon Steel)

  • 고준빈;김우강;원종호
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.83-87
    • /
    • 2005
  • Hardening Constant Velocity joint increases hardness near the surface and the surface improves fatigue life. Although case depth and chemical composition are same, the prior structure of induction hardened Constant Velocity Joint affects the fatigue strength and life during hardening. Therefore torsional fatigue tests of specimens from vaere conducted on induction hardened automotive Constant Velocity joint with various case depths and lrious prior structures, which are obtained by nomalizing, spheriodized annealing and tempering after quenching, woads applied in order to evaluate the relation between prior structure and fatigue strength.

충돌 제트 속도 분포를 고려한 액막의 두께와 속도 특성 (Characteristics of Thickness and Velocity of the Liquid Sheet Formed by Two Impinging Jets Considering Jet Velocity Profile)

  • 추연준;강보선
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.79-85
    • /
    • 2007
  • In this study, the effect of jet velocity profile on the thickness and velocity of the liquid sheet formed by two impinging low speed jets was investigated. To predict the distribution of thickness and velocity of liquid sheet theoretically, the jet velocity profile which was measured experimentally was adopted in addition to the constant jet velocity as well as Poiseuille's parabolic profile. For three cases, the distribution of thickness and velocity of liquid sheet was analytically predicted by solving conservation equations including stagnation point. The predicted results were compared with previous experimental results. The jet velocity profile definitely affected the resulting characteristics of liquid sheet. The distribution of thickness and velocity of liquid sheet was more close to the measured results compared with that which was predicted by the assumption of constant jet velocity.

  • PDF