• Title/Summary/Keyword: constant part

Search Result 922, Processing Time 0.027 seconds

Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process (가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예)

  • Lee, Sang-Ho;Kim, Tae-Hwa;An, Dong-Gyu;Yang, Dong-Yeol;Chae, Hui-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.64-70
    • /
    • 2001
  • In all the Rapid Prototyping (RP) techniques, the computer-aided design (CAD) model of a three-dimensional part is sliced into horizontal layers of uniform, but not necessarily constant, thickness in the building direction. Each cross- sectional layer is successively deposited and, at the same time, bonded onto the previous layer. The stacked layers form a physical part of the model. The objective of this study is to develop a software for automatic generation of unit shape part(USP) for a new RP process, Variable Lamination Manufacturing using the linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S). In order to examine the applicability of the developed software to VLM-S, USPs of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

Provisioning Quantity Determination of Consumable Concurrent Spare Part Under Availability Constraint and Cannibalization Allowed (운용가용도 제약하에서 동류전용이 허용될 때 소모성 동시조달부품의 적정구매량 결정)

  • Oh, Geun-Tae;Na, Yoon-Kyoon;Kim, Myung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.199-207
    • /
    • 2010
  • In this paper considered is the provisioning quantity determination problem of consumable concurrent spare parts (CSP) of a new equipment system to minimize the procurement cost under the operational availability constraint. When a part fails, repair of the failed part is impossible and the part is replaced and cannibalization is allowed. The failure of a part is assumed to follow a Poisson process and the operational availability in CSP is defined. The solution procedure consists of two parts. Firstly, a heuristic algorithm is developed under the assumption that the failure rate is constant during the CSP period. Secondly, proposed is a simulation search procedure which improves the heuristic solution to the near optimal solution in a reasonable amount of time. An illustrative example is shown to explain the solution procedure.

2-TYPE SURFACES AND QUADRIC HYPERSURFACES SATISFYING ⟨∆x, x⟩ = const.

  • Jang, Changrim;Jo, Haerae
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.571-585
    • /
    • 2017
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigen vectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we showed that a 2-type surface M in $E^3$ satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle},{\rangle}$ is the usual inner product in $E^3$, then M is an open part of a circular cylinder. Also we showed that if a quadric hypersurface M in a Euclidean space satisfies ${\langle}{\Delta}x,x{\rangle}=c$ for a constant c, then it is one of a minimal quadric hypersurface, a genaralized cone, a hypersphere, and a spherical cylinder.

MEASUREMENT AND CHARACTERIZATION OF FRICTION IN AUTOMOTIVE DRIVESHAFT JOINTS

  • Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.723-730
    • /
    • 2007
  • The typical design of automotive driveshafts generally utilizes Constant Velocity(CV) joints as a solution to NVH. CV joints are an integral part of vehicles and significantly affect steering, suspension, and vehicle vibration comfort levels. Thus, CV joints have been favored over universal joints due to the constant velocity torque transfer and plunging capability. Although CV joints are common in vehicle applications, current research works on modeling CV joint friction and assumes constant empirical friction coefficient values. However, such models are long known to be inaccurate, especially under dynamic conditions, which is the case for CV joints. In this paper, an instrumented advanced CV joint friction apparatus was developed to measure the internal friction behavior of CV joints using actual tripod-type joint assemblies. The setup is capable of measuring key performance of friction under different realistic operating conditions of oscillatory speeds, torque and joint installation angles. The apparatus incorporates a custom-installed triaxial force sensor inside of the joint to measure the internal CV joint forces(including friction). Using the designed test setup, the intrinsic interfacial parameters of CV joints were investigated in order to understand their contact and friction mechanisms. The results provide a better understanding of CV joint friction characteristics in developing improved automotive driveshafts.

Code Acquisition with Receive Diversity and Constant False Alarm Rate Schemes: 2. Nonhomogeneous Fading Circumstance (수신기 다양성과 일정 오경보 확률 방법을 쓴 부호획득: 2. 벼균질 감쇄 환경)

  • Kwon Hyoung-Moon;Kang Hyun-Gu;Park Ju-Ho;Ahn Tae-Hoon;Lee Sung-Ro;Song Iick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.725-734
    • /
    • 2006
  • As a sequel to Part 1, the performance characteristics of the cell averaging (CA), greatest of (GO), and smallest of (SO) constant false alarm rate (CFAR) processors in nonhomogeneous environment are obtained and compared when receiving antenna diversity is employed in the pseudonoise (PN) code acquisition of direct-sequence code division multiple access (DS/CDMA) systems. Unlike in homogeneous environment, the GO CFAR processor is observed to exhibit the best performance in nonhomogeneous environment, with the CA CFAR processor performing the second best.

Creep Crack Growth Properties of Rotor Steel under Constant Load and $C_t$ Condition (일정하중 및 일정$C_t$에서 로터강의 크리프 균열전파특성)

  • Jeong, Soon-Uk;Lee, Hun-Sik;Kim, Young-Dae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.501-506
    • /
    • 2001
  • The creep crack growth properties in 3.5NiCrMoV steel were investigated at $550^{\circ}C$ by using CT specimen under constant $C_t$ condition that was held during crack growth of 1mm distance. $C_t$ lely on load line displacement rate and $C^*$ usually increase with crack length though load is reduced in order to maintain constant $C_t$ value as crack growth. Fully coalesced area(FCA) ahead of crack tip tend to increase as $C_t$ increase to the critical value, and after that value FCA decrease. For the tertiary creep stage of crack growth test, the most of displacement is due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of $C_t$. At constant load and $C_t$ region, crack growth slope was 0.900 and 0.844 each, on the other hand $C^*$ slope was 0.480.

  • PDF

Analysis of Operating Characteristics of 200kW Class Micro Gas Turbine (200kW 급 마이크로 가스터빈의 운전특성 분석)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1015-1022
    • /
    • 2013
  • This study simulates the operation of a 200 kW class micro gas turbine that is currently under development. The performance and operating characteristics depending on the load control scheme (constant turbine inlet temperature versus constant turbine exit temperature) and ambient condition were investigated using detailed component performance data. The sensitivities of operating parameters, such as the compressor surge margin and flow path temperatures, according to unit fuel flow change were predicted for a wide load range. The sensitivity analysis showed that the steady state calculation provided useful information about the maximum surge margin reduction during load change.

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.