• Title/Summary/Keyword: constant load

Search Result 1,735, Processing Time 0.026 seconds

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Effect of Operating Conditions of UASB Reactor on Biodegradation of C. I. Reactive Blue 114 (C. I. Reactive Blue 114의 분해에 미치는 혐기성 UASB 반응기 운전조건의 영향)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Park, Tae-Joo;Park, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.619-627
    • /
    • 2000
  • Biodegradation of the C. I. Reactive Blue 114 was investigated in an upflow anaerobic sludge blanket (UASB) reactor. Important parameters studied include dye concentration, the kind and concentration of carbon source, hydraulic retention time (HRT), and influent pH. Glucose was found to be a better co-substrate than the mixture of volatile fatty acids (VFAs), although its concentration did not affect dye removal efficiency in the range of $1000{\sim}3000mg/{\ell}$. When HRT increased from 6 hr to 24 hr, dye removal efficiency increased up to 12 hr and remained almost constant thereafter at about 40%. When influent pH was varied in the range of 6.0~8.0, the effluent pH was varied in the range of 6.8~7.5 with maximum efficiency at pH 7.0. The highest dye removal rate obtained was $52mg/{\ell}{\cdot}day$, while the maximum dye load to meet the discharge limit of color intensity was estimated to be $46mg/{\ell}{\cdot}day$ at HRT of 12 hr and an influent glucose concentration of $2200mg/{\ell}$.

  • PDF

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

A Study on the Design of Amplifier for Source Driver IC applicable to the large TFT-LCD TV (대형 TFT-LCD TV에 적용 가능한 Source Driver IC 감마보정전압 구동용 앰프설계에 관한 연구)

  • Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • A CMOS rail-to-rail high voltage buffer amplifier is proposed to drive the gamma correction reference voltage of large TFT LCD panels. It is operating by a single supply and only shows current consumption of 0.5mA at 18V power supply voltage. The circuit is designed to drive the gamma correction voltage of 8-bit or 10-bit high resolution TFT LCD panels. The buffer has high slew rate, 0.5mA static current and 1k$\Omega$ resistive and capacitive load driving capability. Also, it offers wide supply range, offset voltages below 50mV at 5mA constant output current, and below 2.5mV input referred offset voltage. To achieve wide-swing input and output dynamic range, current mirrored n-channel differential amplifier, p-channel differential amplifier, a class-AB push-pull output stage and a input level detector using hysteresis comparator are applied. The proposed circuit is realized in a high voltage 0.18um 18V CMOS process technology for display driver IC. The circuit operates at supply voltages from 8V to 18V.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.