• Title/Summary/Keyword: constant heat flux

Search Result 224, Processing Time 0.057 seconds

Numerical Study on Pulsatile Flow and Heat Transfer in a Curved Tube with Constant Heat Flux (일정 열유속을 받는 곡관내에서의 맥동 열유동에 관한 수치적 연구)

  • 백영렬;이재헌;오명도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1031-1038
    • /
    • 1994
  • Characteristics of pulsatile flow and heat transfer have been studied numerically in the constant heat flux curved tube with periodic pressure gradient. As the Womersley number increases, the phase difference between the pressure gradient and the cross section averaged axial velocity becomes larger. In case of the Womersley number $\beta = 2$, when cross section averaged axial velocity reaches periodic state with time, the reverse and the natural flow coexist at phase angle, $\lambda = 1.44\pi$ and $\lambda =1.96\pi$. For all the Womersley numbers of present investigation, the time variation of wall temperature near inner wall is higher than that of near outer wall, independent of phase angle.

Combined Radiation and Natural Convection Heat Transfer in an Enclosure with a Constant Heat Flux at the Bottom (밑면에 균일 열유속이 존재하는 밀폐공간에서의 복사 - 자연대류열전달)

  • Kwon, Sun-Sok;Kwon, Yong-Il
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.28-42
    • /
    • 1992
  • This investigation is carried out numerically for the two dimensional natural convection and surface radiation heat transfer in a square enclosure. The bottom wall is a constant heat flux at hot temperature and also top wall is isothermal at cold temperature whereas the left and right side walls are adiabatic except a transparent window on the right side partially. The exchange of radiant energy is obtained by the net radiation method and the shape factor by the crossed string method. The change in temperature and Nusselt number distributions of the walls due to the effect of the wall emissivity for various emissivities and for various dimensionless insolation energies are investigated. The dimensionless local convective heat flux and local radiative heat flux distributions in the wall except an adiabatic wall are also compared.

  • PDF

PlV Measurement of Channel Cavity Flow with Bottom Heat surface of Constant Heat Flux (일정 열유속의 하부 가열면을 갖는 채널캐비티 내부유동의 PIV 계측)

  • 조대환;김진구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-442
    • /
    • 1997
  • An experimental study was carried out in a channel cavity with square heat surface by visual¬ization equipment with Mach - Zehnder interferometer and laser apparatus. The image processing system consists of one commercial image board slit into a personal computer and 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system which adopted two¬frame grey-level cross correlation algorithm. Heat source was uniform heat flux(o.4W/cm$^2$, , O.8W/cm$^2$, 1.2W/cm$^2$). Obtained result showed various flow patterns such as kinetic energy distribution. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach ~ Zehnder are also compared in terms of constant heat flux.

  • PDF

Heat Transfer Characteristics of Micro-encapsulated Phase-Change-Material Slurry (잠열 마이크로캡슐 슬러리의 열전달 특성)

  • Kim, Myoung-Jun;Park, Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.518-525
    • /
    • 2006
  • The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase-change material and water mixture slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration, heat flux, and the slurry velocity. The experimental results revealed that the increase of tube wall temperature of latent microcapsule slurry was lower than that of water caused by the heat absorption of fusion.

Heat Transfer Characteristics of Micro-encapsulated Phase Change Material Slurry (잠열 마이크로캡슐 슬러리의 열전달 특성)

  • Park, Ki-Won;Kim, Myoung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.193-198
    • /
    • 2005
  • The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration, heat flux, and the slurry velocity. The experimental results revealed that the increase of tube wall temperature of latent microcapsule slurry was lower than that of water caused by the heat absorption of fusion.

  • PDF

Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구)

  • Kim, Jeong-Bae;Park, Moon-Hee;Jeon, Woo-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

An Approximate Analytical Solution for the Unsteady Close-Contact Melting on a Flat Surface with Constant Heat Flux (등열유속에 의한 평판위 비정상 접촉융해에 대한 근사적 해석해)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1726-1734
    • /
    • 1998
  • This paper focuses on the unsteady close-contact melting phenomenon occurring between a phase change material kept at its melting temperature and a flat surface on which constant heat flux is imposed. Based on the same simplifications and framework of analysis as the case of constant surface temperature, an approximate analytical solution which depends only on the liquid-to-solid density ratio is successfully derived. In order to keep consistency with the known solution procedure, both the dimensionless wall heat flux and the Stefan number are properly redefined. The obtained solution proves to agree quite well with the published numerical data and to be capable of resolving the fundamental features of unsteady close-contact melting, especially in the presence of the solid-liquid density difference. The density ratio directly affects the film growth rate and the initial value of solid descending velocity, thereby controlling the duration of unsteady process. The effects of other parameters can be evaluated readily from the steady solution which is implied in the normalized result. Since the dimensionless surface temperature for the present boundary condition increases from zero to unity along the evolution path of the liquid film thickness, the unsteady process lasts longer than that for the case of isothermal heating.

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber (정적연소기에서 순간온도를 이용한 열유속에 관한 연구)

  • 이치우;김지훈;하종률;김시범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF