• Title/Summary/Keyword: constant angle

Search Result 935, Processing Time 0.031 seconds

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.

Experimental Study on the Adjustment Processes of Minning Pit in the Dredged Channels (준설하천의 웅덩이 적응에 관한 실험적 연구)

  • Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.657-666
    • /
    • 2010
  • The adjustment processes of mining pits in the disturbed channels by sand or gravel mining were investigated by laboratory experiments in this study. The pit migrated with speed when the river bed was steep. The pit migrated slow and steady when the pit was filling with sand, but the pit migrated with speed after the filling processes was finished. The submerged angle of repose in the pit was nearly constant during the pit was filling. The pit was filled with sand with speed as the channel slope was increased. It took time for the pit to be filled with sand as the pit dimension was increased. This meant that the disturbed channels by sand or gravel mining to adjust the new environment was dependent on the slope of the channels and the dimension of the pits. The dimensionless pit length was short and the dimensionless pit depth was shallow as the time was increased. The dimensionless pit depth was shallow, but the dimensionless pit migration speed was increased as the dimensionless shear velocity and the migration speed of the pit were increased. The dimensionless pit depth was increased with the dimensionless bar migration speed. The shape of the pit was deformed and migrated downstream in accordance with the location and shape of the biased bar front which was developed upstream.

A Study on Maximum Responses of Rotational Shells Subjected to Uneven Settlements by Stochastic Method (부등침하를 받는 회전 쉘의 최대응답 추정에 관한 연구)

  • 정명채
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.175-184
    • /
    • 1997
  • The objective of this paper is to study arelationship between maximum response and its standard deviation of rotational shells that are subjected to uneven settlements. For this, the ratio, .eta, of the maximum response to standard deviation and it's approximate, .eta./sub apr/, are investigated by stochastic methods. Also, an equation for .eta./sub apr/, that is a function of predominant harmonic number is suggested. The settlements are represented by the Fourier series. Each term in the series contains two coefficients; the amplitude and the phase angle. It is assumed that phase angles are random variables and amplitudes are deterministic. To investigate the characteristics of .eta. and .eta./sub apr/, 100 phase angles for two types of artificial amplitudes spectra are used in the analysis. .eta. and .eta./sub apr/, are almost constant regardless of amplitude type, position of a shell or type of responses; they fall into from 2.0 to 2.5. .eta./sub apr/ is always close to .eta., but tends to be somewhat greater. It may be concluded that a maximum responses of rotational shells subjected to uneven settlements are .eta./sub apr/ (about 2.5) times of its standard deviation. It is considered that this result is used when we design rotational shell structures subjected to differential settlements.

  • PDF

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

Development of Cylindrical Paperpot Manufacturing Equipment (원통형 종이포트 제조장치 개발)

  • Park, Minjung;Lee, Siyoung;Kang, Donghyeon;Kim, Jongkoo;Son, Jinkwan;Yoon, Sung-wook;An, Sewoong
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • This study was conducted to develop a cylindrical paperpot manufacturing equipment which is capable of continuously producing paperpots with a constant size. The equipment consists of the soil supply part, the paper supply part, the pot manufacturing part, the paperpot cutting part and its process for manufacturing paperpot from the soil supply to the paperpot cutting is continuously performed. As a result of the performance test using this equipment, we suggest that the optimal moisture content and injection pressure to supply soil are 50%~60%, and 0.5 Mpa respectively. Moreover the appropriate temperature for adhesive strength is $150{\sim}160^{\circ}C$ taking into account the performance of device and adhesion time. Also, considering the cutting speed and safety, it is appropriate to adopt a straight blade having a clean plan at a minimum angle of $30^{\circ}$. In addition, the manufacturing capacity of the developed equipment was 3300 pots per hour.

Study on Mechanical Properties of Rice Culm (벼줄기의 기계적(機械的) 특성(特性)에 관(關)한 연구(硏究))

  • Hur, Yun Kun;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 1982
  • Mechanical properties of rice plants were tested to determine compressive force, bending force, tensile force and shear force for improvement of harvesting machines and for efficient utilization of rice culm during the proper harvesting period. Rice varieties used in this study were two Japonica varieties with Irri 348 and Jinju, and two $Indica{\times}Japonica$ hybrids with Seogwang and Taebaeg, which were grown in the standard fertilization field of Chungnam Rural Development Office. Also Jinju and Taebaeg were tested to elucidate the shearing characteristics which included shear force-strain relationship, shear force and shear energy according to the position from the ground level, the shearing angle to the rice culm, and the moisture content. 1. Compressive force, bending force, tensile force and shear force were higher In Japonica varieties than $Indica{\times}Japonica$ hybrids. 2. Shear force to overall culm length decreased progressively to upper positions in Jinju variety but a constant shear force was approximately showed between the ground level and the position of 21cm in Taebaeg variety. 3. Shear force and shear energy increased with increase of the cross sectional area, and the rates of increase were high in general up to the cross sectional area of $10mm^2$ and then they became dull very much. 4. Shear force and shear energy decreased with decrease of moisture content of rice culm after cutting up to the moisture content of 60% (w. b.) and then they did not change significantly.

  • PDF

The effects of growth temperatures and V/III ratios at 1000℃ for a-plane GaN epi-layer on r-plane sapphire grown by HVPE (r면 사파이어 위에 HVPE로 성장된 a면 GaN 에피층의 성장온도 효과 및 1000℃에서의 V/III족 비의 효과)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • The effects of the growth temperature on the properties of a-plane GaN epi-layer on r-plane sapphire by HVPE were studied, when the constant V/III ratio and the flow rate of HCl for the Ga source channel was fixed at 10 and 700 sccm, respectively. Additionally the effects of V/III ratios for source gasses were studied when growth temperature and the flow rate of HCl for the Ga source channel was fixed at $1000^{\circ}C$ and 700 sccm, respectively. As the growth temperature was increased, the values of Full Width Half Maximum (FWHM) for Rocking curve (RC) of a-plane GaN (11-20) epi-layer were decreased and thickness of a-plane GaN epi-layer were increased. As V/III ratios were increased at $1000^{\circ}C$, the values of FWHM for RC of a-plane GaN (11-20) were declined and thickness of a-plane GaN epi-layer were increased. The a-plane GaN (11-20) epi-layer grown at $1000^{\circ}C$ and V/III ratio = 10 showed the lowest value FWHM for RC of a-plane GaN (11-20) for 734 arcsec and the smallest dependence of Azimuth angle for FWHM of (11-20) RCs.

The Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Mono-Azobenzene Group in the Side Chain (곁사슬에 모노-아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 성질에 관한 연구)

  • 이상배;양정성;박동규
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.737-743
    • /
    • 2000
  • Polyquinonediimines (PQDI) which have stable structure on heat and contains mono-azobenzene in the side chain were synthesized by means of condensation polymerization under TiCl$_4$. The synthesized monomers and polymers were identified by FT-IR, $^1$H-NMR, and elementary analysis. Especially, PQDI was comfirmed by the double-bonding peak of >C=N appeared near 1625 $cm^{-1}$ / by means of FT-IR spectrum. PQDI containing mono-azobenzene group in both side chains wat not soluble in non-polar solvents at all but partially soluble in the polar solvents having small dielectric constant, and dissolved in the strong acid such as sulfuric acid and $CH_3$SO$_3$H. Molecular weight distribution of PQDI measured by GPC showed 1.74. It was confirmed through X-ray diffraction analysis that the polymer was partially crystalline at the low angle region, but amorphous after heat treatment at 1$25^{\circ}C$. The glass transition temperature (T$_{g}$ ) of synthesized polymer was measured as 1$25^{\circ}C$ by differential scanning calorimetry. The SHG value for $\chi$$^{(2)}$ after poling at 1$25^{\circ}C$ was 8.6 pm/V (λ=1.542 ${\mu}{\textrm}{m}$). The SHG value slowly decreased with time from the start but appeared temporal stability after 100 hours.

  • PDF

Calculation of Failure Load of V-shaped Rock Notch Using Slip-line Method (Slip-line법을 이용한 V형 암석 노치의 파괴하중 계산)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.404-416
    • /
    • 2020
  • An analytical procedure for calculating the failure load of a V-shaped rock notch under two-dimensional stress conditions was developed based on the slip-line plastic analysis method. The key idea utilized in the development is the fact that the α-line, one of the slip-lines, extends from the rock notch surface to the horizontal surface outside the notch when the rock around the notch is in the plastic state, and that there exists an invariant which is constant along the α-line. Since the stress boundary condition of the horizontal surface outside the rock notch is known, it is possible to calculate the normal and shear stresses acting on the rock notch surface by solving the invariant equation. The notch failure load exerted by the wedge was calculated using the calculated stress components for the notch surface. Rock notch failure analysis was performed by applying the developed analytical procedure. The analysis results show that the failure load of the rock notch increases with exponential nonlinearity as the angle of the notch and the friction of the notch surface increase. The analytical procedure developed in this study is expected to have applications to the study of fracture initiation in rocks through wedge-shaped notch formation, calculation of bearing capacity of the rock foundation, and stability analysis of rock slopes and circular tunnels.