• Title/Summary/Keyword: consolidation velocity

Search Result 68, Processing Time 0.022 seconds

The Estimation of Horizontal Coefficient of Consolidation Using Velocity Method (Velocity Method를 이용한 수평압밀계수 산정에 관한 연구)

  • 김지용;천홍래;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.475-480
    • /
    • 2000
  • This study was to present the method for estimating the horizontal coefficient of consolidation by using velocity method which was based on the Barren's equation. Horizontal drainage consolidation tests, including a radial drainage consolidation test, a cylindrical consolidation test, and a large soil box test, were performed to examine its validity. Using the velocity method, horizontal coefficient of consolidation was calculated and compared with lost method, √t method, Magnan & Deroy's method, Bergado's method.

  • PDF

Estimation of Horizontal Coefficient of Consolidation Using Velocity Method (압밀속도법을 이용한 수평압밀계수 산정)

  • 김지용;김정기;염혜선;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.385-391
    • /
    • 2000
  • Velocity method was supposed by Parkin et al.(1985) in order to supplement previous log t and (equation omitted) method. This study was to present the method for estimating the horizontal coefficient of consolidation by using velocity method which was based on the Barren's equation. Velocity method throughly eliminated not only settlement curve which had shape with difficulty in evaluating coefficient of consolidation but also the effect of unknown intial compression, the secondary consolidation and occurrence of unknown point by using velocity instead of settlement. The purpose of this study is to investigate its application in field. Velocity method was used in obtaining horizontal coefficient of consolidation in Kyung-gi area. Horizontal coefficient of consolidation using velocity method was calculated and compared with log t method, √t method Magnan & Deroy's method, Bergado's method.

  • PDF

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.

Feasibility study on the Evaluation of the degree of consolidation using shear waves for soft clay deposits (전단파를 이용한 연약지반의 압밀도 평가기법 적용성 연구)

  • Youn, Jun-Ung;Kim, Jong-Tae;Lee, Jin-Sun;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.442-451
    • /
    • 2008
  • The evaluation of field degree of consolidation on soft clays has been an important problem in geotechnical areas. Monitoring either settlements or pore water pressures has been widely applied in the filed, but occasionally they have some problems. This study addresses the suggestion and application of another method for evaluating the degree of consolidation using shear wave velocities. A research site where soft clay layers were consolidated by surcharging loads was chosen. Laboratory tests were performed to determine the relation between shear wave velocity and effective stress. Field seismic tests were conducted several times during the consolidation of the clay layers. The tests results show that the shear wave velocity increased significantly as clays consolidated. The shear wave velocities at each field stress states were derived from the laboratory results and the degree of consolidation was evaluated by comparing the shear wave velocities obtained by laboratory and field seismic methods. In most stress states, the degree of consolidation evaluated using the shear wave velocity matched well with that obtained from field settlement record, showing the potential of applying the method using shear waves in the evaluation of field degree of consolidation on soft clay deposits.

  • PDF

Analysis of Consolidation Settlement of SCP Improved Ground (SCP 개량지반의 압밀침하 결과 분석)

  • Jung, Sun-Young;Jung, Jong-Bum;Yang, Sang-Yong;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.990-997
    • /
    • 2005
  • In this paper, the measured results obtained from the ground improved by SCP method at quay-wall caisson foundation in Pusan New Port 1-1 phase are analyzed and then compared with the values predicted by a consolidation theory. The measured settlement is generally smaller than the predicted settlement. For consolidation velocity, the measured velocity is later than the predicted value. According to the execution of caisson placing phases, the predicted value shows higher settlement than the measured one with time being.

  • PDF

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Estimation of Consolidation in Soft Clay by Field Velocity Probe (Field Velocity Probe를 활용한 연약지반 압밀 평가)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.511-517
    • /
    • 2013
  • The Field Velocity Probe (FVP) has been widely applied to determine the various characteristics of soils. This study seeks to estimate soil consolidation characteristics using an FVP and to increase its application in the field. The specimens were extracted from depths of 3 and 6 m at the study site, an area of soft clay in Incheon. In laboratory testing, the specimens were placed in an improved oedometer cell to measure shear wave velocity, and statistical analysis was performed to compare the results of effective stress and shear wave velocity. FVP enables increased resolution in the field because it measures the shear wave velocity every 20 cm. To estimate the condition of consolidation, we compared the results of shear wave velocities between those obtained in the laboratory and those in the field. The field conditions are used to analyze overconsolidated and normally consolidated soils at depths of 3 and 6 m, respectively. The results show that FVP is a suitable method for estimating the degree of consolidation.

Evaluation of Consolidation Properties in Soft Soils Using Elastic and Electromagnetic Waves (전단파와 전자기파를 이용한 연약 지반의 실내 압밀 특성 평가)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.25-34
    • /
    • 2008
  • A new hybrid oedometer cell is designed and manufactured to investigate a behavior of soft soils by using elastic and electromagnetic waves during consolidation test. Bender elements, which generate and detect shear waves, are placed in the top cap and the bottom plate and mounted on the oedometer wall. Double wedge type electrical resistance probe, which measures local void ratio change, is positioned onto the top cap of the oedometer cell. The bender elements and the electrical resistance probe are anchored into a nylon set screw with epoxy resin. The nylon set screw with epoxy resin minimizes directly transmited elastic waves through the oedometer cell due to impedence mismatch and allows for easy replacement of defected bender elements and electrical resistance probe. Primary consolidation time can be estimated from the slope of electrical resistance versus log time curve and the evolution of shear wave velocity. The shear wave velocity can be used to assess inherent anisotropy when disturbance effects are minimized because particle alignment affects the shear wave velocity. The void ratios evaluated by the electrical resistance probe are similar to those by the settlement during consolidation. This study suggests that the shear wave velocity and the electrical resistance can provide complementary imformations to understand consolidation characteristics such as primary consolidation, anisotropy, and void ratio.

Estimation of volume Ratio according to Step up Filling Method for a Dredged Clay (단계투기법에 의한 준설점토의 체적비 산정)

  • Lee, Song;Kang, Myoung-Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.167-178
    • /
    • 2000
  • An experimental study on step up filling method is carried out to reinforce the Yano method which is widely used to estimate volume ratio and self-weight consolidation settlement in reclamation area. This method considers actual reclamation construction in which dredged clay is continuously filled and rising of deposit height is presented as a result of volume decrease by height rising and self-weight consolidation. It measured the relationship between filling velocity and deposit rising velocity; calculated the total filling height which is needed to achieve the planned final deposit height, and its solid height and the time which is taken to finish the planned final deposit height; and on the basis of these calculated parameters, predicted the self-weight consolidation and volume change ratio in reclamation construction. Yano method is also used to predict the same conditions. 29.8% in self-weight consolidation, 31.1% in volume ratio, 40% in void ratio and water content is underestimated in Yano method compared to step up filling method.

  • PDF

Experimental study on characteristics of sedimentation and consolidation for dredged clay in the west coastal of Korea (국내 서해안 준설토의 침강압밀특성에 관한 실험 연구)

  • Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1190-1197
    • /
    • 2009
  • Design parameters related to Yano's method(1984, 1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation of dredged and reclaimed ground, were analyzed and their propriety were reassessed in this paper. Data analyses were performed on the basis of the settling test results using samples from the west coastal area of Korea. From analysis of results, for specific characteristics of these dredged and reclaimed marine soft clays, co-relations of initial water content - coefficient of sedimentation/ consolidation - initial setting velocity were evaluated. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed.

  • PDF