• Title/Summary/Keyword: conserved

Search Result 1,811, Processing Time 0.033 seconds

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.

Identification and Characterization of Alternative Promoters of the Rice MAP Kinase Gene OsBWMK1

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Park, Hyeong Cheol;Kang, Chang Ho;Shim, Sang In;Chung, Jong Il;Cheong, Yong Hwa;Lee, Sang Yeol;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.467-473
    • /
    • 2009
  • Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

  • Lee, Ja-Rang;Park, Sang-Je;Kim, Young-Hyun;Choe, Se-Hee;Cho, Hyeon-Mu;Lee, Sang-Rae;Kim, Sun-Uk;Kim, Ji-Su;Sim, Bo-Woong;Song, Bong-Seok;Jeong, Kang-Jin;Lee, Youngjeon;Jin, Yeung Bae;Kang, Philyong;Huh, Jae-Won;Chan, Kyu-Tae
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crabeating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences (생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝)

  • Kang, Tae-Ho;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Biological sequences such as DNA sequences and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological dataset with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with the fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. As the result, the experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.

Effect of Tex1/THOC3, a component of THO complex, on growth and mRNA export in fission yeast (분열효모에서 THO 복합체의 구성요소인 Tex1/THOC3가 생장 및 mRNA 방출에 미치는 영향)

  • Bae, Soo Jeong;Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.292-296
    • /
    • 2017
  • In eukaryote, THO/TREX complex plays a critical role in transcriptional elongation, pre-mRNA processing, and nuclear mRNA export. This complex is evolutionally well- conserved, but there are some differences in composition and function according to organisms. Here we showed that spTex1, a component of THO/TREX complex, is not essential for growth and mRNA export in a fission yeast, Schizosaccharomyces pombe, which is more similar to higher eukaryote than budding yeast. Deletion and overexpression of the spTex1 gene do not lead to any detectable growth phenotype and accumulation of poly(A)+ RNA in the nucleus. And the spTex1-GFP protein is localized mainly in the nucleus. Yeast two-hybrid and Co-immunoprecipitation analysis showed that the spTex1 protein interacted with spHpr1 (THOC1) and spTho2 (THOC2), main subunits of THO complex. We conclude that the S. pombe Tex1 is a component of THO/TREX complex, but does not plays important roles in growth and bulk mRNA export from the nucleus.

S-adenosyl-L-homocysteine hydrolase gene is down-regulated in abnormal flower inducing environment in chyrsanthemum (국화 기형화 발생과 S-adenosyl-L-homocysteine hydrolase 유전자 발현)

  • Huh, Yeun Joo;Park, Sang Kun;Lim, Jin Hee;Choi, Seong Youl;Lee, Young Ryan
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.278-283
    • /
    • 2010
  • This study was conducted to investigate the involvement of flower abnormality and S-adenosyl-L-homocysteine hydrolase (SAHH), which is one of the key enzyme in the maintenance of methylation. Plants exposed to high temperature (HT) and long day (LD) condition from 14-27days after short day (SD) produced abnormal flower, having numbers of ray florets. Numbers of ray florets were increased more than 2 folds by HT of $35/20^{\circ}C$ and LD of 14 hour comparing those of $25/20^{\circ}C$ (12 h/12 h). Full-length cDNA clone of S-adenosyl-L-homocysteine hydrolase (DgSAHH) in spray chrysanthemum 'Lerbin' contained an 1455 bp open reading frame coding for 485 amino acids. It showed highly conserved coding sequences among the different plant species with over 90% homology. DgSAHH expression was decreased in abnormal flower inducing treatment of HT and LD, while DgSAHH transcripts accumulated in flower bud of non abnormality inducing condition. This result implicate that DgSAHH expression is affected by temperature and photoperiod during flower development and suppression of DgSAHH is a one of the cause of abnormal flower under HT and LD condition.

A study on the bedrock erosional forms at Dutayeon, Yanggu (양구 두타연 인근 지역의 기반암 하상지형 연구)

  • KIM, Jong Yeon;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.31-49
    • /
    • 2012
  • Satae cheon, a tributary of the Suip cheon in Yanggu, Gangwon province, is an international river extended to North Korea. Most of drainage basin area of the river was the fierce battle field during the Korean War(1950-1953) and hard to access as it located between the MDL(Military Demarcation Line) and the CCZ(Civilian Control Zone: about 10km south from MDL). By the restriction of access to the sites, most of natural landscape have been well conserved except limited use for military activities. Even the landfoms in that area were not studied, except the government's heritage reports. Satae Cheon's channel follows the Imdang fault line(N-S) to Satae-ri and flow to west to the Dutayeon area. The river meanders along geological structure or weak line at the Dutayeon area. The meandering channel was shorten by the meander cut which linked the thalweg line of meander loop ant the meander neck. As a result of this cut, the river cliff formed by the Satae cheon became the part of newly formed channel bed and the S-forms are formed. After the channel route stabilized, channel incised the rock with large potholes and undulating walls were formed. The channel width changes from 1m to 10m with restriction of the undulating walls, so this part can be regarded as inner channel or inner gorge. From the point of planar forms it also can be slot-type canyon.

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.408-408
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of $6.29Gm^3$ per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF