• Title/Summary/Keyword: conservation of mass

Search Result 524, Processing Time 0.03 seconds

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

Numerical Analysis on the Increasing Temperature Characteristics of Vaporizer Fin for Liquefied Natural Gas with Super Low Temperature (초저온 액화 천연 가스용 기화기 핀의 승온 특성에 관한 수치 해석)

  • Yi, C.S.;Kong, T.W.;Lee, H.D.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • This study is numerical analysis on the increasing temperature characteristics of vaporizer fin for liquefied natural gas with super low temperature. Existing LNG vaporizers use the direct contact heat transfer mode where the extreme super low temperature LNG of $-162^{\circ}C$ flows inside of the tubes and about $20^{\circ}C$air flows on outside of the fin. Recently, the vaporizers with great enhanced performance compared to conventional type have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has a fixed iced. These characteristic cause a low efficiency in vaporizer, total plant cost and installing space can be increased. The vaporizing characteristics of LNG via heat exchanger with air are analytically studied for an air heating type vaporizer. This study is intended to supply the design data for the domestic fabrication of the thickness and angle vaporizer fin. Governing conservation equations for mass, momentum and energy are solved by STAR-CD based on an finite volume method and SIMPLE algorithm. Calculation parameter is fin thickness, setup angle and LNG temperature. If the vaporization performance of the early stage and late stage of operating is considered, the case of ${\phi}=90^{\circ}$ was very suitable. In this paper was estimated that the heat transfer was most promoted in case of THF=2mm.

  • PDF

Development of the Two-Zone Model to Estimate the Air Quality in Indoor Environments (실내 공기질 평가를 위한 2구획 모델의 개발)

  • 조석호;양성환;이봉헌;정성욱;이병호
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.745-751
    • /
    • 1998
  • The well-mixed room model has been traditionally used to predict the concentrations of contaminants in indoor environments. However, this is inappropriate because the flow fields in many indoor environments distribute contaminants non-uniformly, due to imperfect air mixing. Thus, some means used to describe an imperfectly mixed room are needed. The simplest model that accounts for imperfect air mixing is a two-zone model. Therefore, this study on development of computer program far the two-zone model is carried out to propose techniques of estimating the concentration of contaminants in the room. To do this, an important consideration is to divide a room into two-zone, i.e. the lower and upper zone assuming that the air and contaminants are well mixed within each zone. And between the zones the air recirculation is characterized through the air exchange parameter. By this basic assumption, the equations for the conservation of mass are derived for each zone. These equations are solved by using the computational technique. The language used to develope the program is a VISUAL BASIC. The value of air exchange coefficient($f_12$) is the most difficult to forecast when the concentrations of contaminants in an imperfectly mixed room are estimated by the two-zone model. But, as the value of $f_12$ increases, the air exchange between each zone increases. When the value of $f_12$ is approximately 15, the concentrations in both zone approach each other, and the entire room may be approximately treated as a single well-mixed room. Therefore, this study is available for designing of the ventilation to improve the air quality of indoor environments. Also, the two-zone model produces the theoretical base which may be extended to the theory for the multi-zone model, that will be contributed to estimate the air pollution in large enclosures, such as shopping malls, atria buildings, atria terminals, and covered sports stadia.

  • PDF

COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD (유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

In vitro propagation of endangered species, Hylotelephium ussuriense (Kom.) H. Ohba (멸종위기종 둥근잎꿩의비름 (Hylotelephium ussuriense (Kom.) H. Ohba)의 기 내 증식)

  • Bae, Kee-Hwa;Yoo, Kyoung-Hwa;Kim, Ji-Ah;Yoon, Eui-Soo
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • To establish the system of in vitro plant regeneration, the different explants (stem with axillary bud and stem without axillary bud) of Hylotelephium ussuriense were cultured on the Murashige and Skoog's medium containing 6-benzylaminopurine (BA) and indolebutyric acid (IBA). The adventitious shoot induction was more effective in the stem with axillary bud explants than the stem without axillary bud explants, and was the best on MS medium containing 3.0 mg/L BA and 0.01 mg/L IBA. Frequency of plantlet growth was not significantly treated on MS and sucrose. Total chlorophyll contents under ventilation treatment were higher than those in control (non-ventilation). This in vitro propagation protocol will be useful for conservation and mass propagation of this endangered plant.

An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

  • Zhang, Y.;Jeng, D.-S.;Zha, H.-Y.;Zhang, J.-S.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.387-403
    • /
    • 2016
  • In this paper, an integrated model for the wave (current)-induced seabed response is presented. The present model consists of two parts: hydrodynamic model for wave-current interactions and poro-elastic seabed model for pore accumulations. In the wave-current model, based on the fifth-order wave theory, ocean waves were generated by adding a source function into the mass conservation equation. Then, currents were simulated through imposing a steady inlet velocity on one domain and pressure outlet on the other side. In addition, both of the Reynolds-Averaged Navier-Stokers (RANS) Equations and $k-{\varepsilon}$ turbulence model would be applied in the fluid field. Once the wave pressures on the seabed calculated through the wave-current interaction model, it would be applied to be boundary conditions on the seabed model. In the seabed model, the poro-elastic theory would be imposed to simulate the seabed soil response. After comparing with the experimental data, the effect of currents on the seabed response would be examined by emphasize on the residual mechanisms of the pore pressure inside the soil. The build-up of the pore water pressure and the resulted liquefaction phenomenon will be fully investigated. A parametric study will also be conducted to examine the effects of waves and currents as well as soil properties on the pore pressure accumulation.

Numerical Formulation of Consolidation Based on Finite Strain Analysis (대변형 압밀방정식의 수식화)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.77-86
    • /
    • 2013
  • Embankments on soft ground experience significant deformation during time-dependent consolidation settlement, as well as an initial undrained settlement. Since infinitesimal strain theory assumes no configuration change and minute strain during deformation, finite strain analysis is required for better prediction of geotechnical problems involving large strain and geometric change induced by imposed loadings. Updated Lagrangian formulation is developed for time-dependent consolidation combining both force equilibrium and mass conservation of fluid, and mechanical constitutive equation is written in Janumann stress rate. Numerical convergence during Newton's iteration in large deformation analysis is improved by Nagtegaal's approach of considering the effect of rotation in mechanical constitutive relationship. Numerical simulations are conducted to discuss numerical reliability and applicability of developed numerical code: deformation of cantilever beam, two-dimensional consolidation. The numerical results show that developed formulation can efficiently describe large deformation problems. Proposed formulation is expected to facilitate the upgrading of a numerical code based on infinitesimal strain theory to that based on finite strain analysis.

Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique (전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구)

  • Park, No-Suk;Kwon, Soon-Bum;Lee, Sun-Ju;Bae, Chul-Ho;Kim, Jeong-Hyun;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF