• Title/Summary/Keyword: connexin membrane channel

Search Result 7, Processing Time 0.025 seconds

Analysis of CMTX Mutants Using Connexin Membrane Channels (커넥신 세포막채널을 이용한 씨엠티엑스 돌연변이체의 분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.764-769
    • /
    • 2008
  • Mutations in the human connexin 32 (Cx32) gene are responsible for X-linked Charcot-Marie-Tooth (CMTX) disease. Although over 300 different mutations have been identified the detailed molecular etiology of CMTX disease is poorly understood. Several studies reported that connexin membrane channels share most biophysical properties with their parental gap junction channels. In this study, two connexin mutant membrane channels (one mutant channel called the M34T channel in which the methionine residue at the $34^{th}$ position of the Cx32 protein is replaced with threonine residue and the other mutant channel called the T86C channel in which the threonine residue at the $86^{th}$ position is replaced with cysteine residue) associated with CMTX mutations were characterized at the single-channel level instead of using mutant gap junction channels. The biophysical properties of the M34T channel were very similar to those of the gap junction channel formed by M34T mutation. In addition, the mutant membrane channel study revealed the reversal of the gating polarity, the loss of fast gating and the gain of slow gating. The T86C channel also behaves like its parental wild type Cx32 membrane channel. Taken together, these results suggest that a study using connexin membrane channels is useful to characterize CMTX mutants.

Sucrose-permeability Induced by Reconstituted Connexin32 in Liposomes.

  • Rhee, Senng-Keun;Hong, Eun-Jnng
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 1995
  • Functional study of the gap junction channel has been hindered by its inaccessibility in situ. Identification of forms of this channel in artificial membrane has been elusive because of the lack of identifying channel physiology. Connexin32 forms gap junction channels between neighboring cells in rat liver. Connexin32 was affinity-purified using a monoclonal antibody and reconstituted into artificial phospholipid vesicles. The reconstituted connexin32 formed channels through the vesicle membrane that were permeable to sucrose (Stokes radius: $5{\AA}$). The permeability to sucrose was reversibly reduced by acidic pH. In addition, the pH effect on the permeability to sucrose fit well with by the Hill's equation (where, n=2.7 and pK=6.7).

  • PDF

Single Channel Analysis of Xenopus Connexin 38 Hemichannel (제노푸스 Cx38 세포막채널의 단일채널분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1517-1522
    • /
    • 2007
  • Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.

Effect of Ginseng Saponin on Gap Junction Channel Reconstituted with Connexin 32

  • Hong, Eun-Jung;Huh, Keun;Rhee, Seung-Keun
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.264-268
    • /
    • 1996
  • Panax-ginseng saponin has been known to exert various pharmacological effects on cellular metabolism. This study was performed to determine the effect of ginseng saponin on gap junction channel-mediated intercellular communication, using an established in vitro system of reconstituted gap junction channels. Gap junction channels are a specialized plasma membrane fraction, which are permeable to relatively large water-soluble molecules. The sucrose permeable property of reconstituted gap junction channels was completely inhibited with 0.1 % (w/v) of ginseng saponin. We also compared the effect of ginseng saponin with that of Triton X-100, a nonionic detergent, on the same system. Triton X-100 showed significantly different effect on sucrose-permeability of gap junction channel from that was affected by ginseng saponin. The structures of liposomes containing gap junction channels was significantly destroyed by Triton X-100.

  • PDF

Mechanism for Gating of Gap Junction Channel. (간극결합채널의 개폐기전)

  • 오승훈
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.882-890
    • /
    • 2004
  • Gap junction is a membrane structure facilitating the direct transmission of several ions and small molecules between two cells. It is also called an 'intercellular channel' to distinguish it from other well-known cellular channels (e.g. sodium and potassium channels). Gap junction channels are not passive conduits, rather the ion channels modulated by several stimuli including pH, calcium ion, voltage, and a chemical modification (mainly known as phosphorylation). Among them, the effects of voltage on the gating of gap junction channels have been well studied. Gap junction channels are more sensitive to the transjunctional potential ($V_j$) between two cells rather than the membrane potential($V_m$) between inside and outside the cell. In this review, I will summarize the general properties of gap junction channel and discuss the gating mechanism for the gap channels.

Growth-Suppressing Activity of the Transfected Cx26 on BICR-M1Rk Breast Cancer Cell Line

  • Lee, Hae-Jung;Rhee, Seung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.477-482
    • /
    • 2011
  • There are accumulating evidences suggesting that connexin (Cx), a gap junction channel-forming protein, acts as a growth suppressor in various cancer cells, and this effect is attributeed to the gap junction-mediated intercellular communication (GJIC). In order to characterize the relationship between the growth-arresting activity of Cx26 and its cytoplasmic localizations after expression, we linked a nuclear export signal (NES) sequence to Cx26 cDNA before transfecting into a rat breast cancer cell line. A confocal fluorescent microscopic observation revealed that the insertion of NES minimized the nuclear expression of Cx26, and increased its cytoplasmic expression, including plasma membrane junctions. Total cell counting and BrdUrd-labeling experiments showed that the growth of the breast cancer cells was inhibited by 74% upon transfection of Cx26-NES, whereas only 9% inhibition was observed with only Cx26 cDNA.

Effect of Amino Terminus of Gap Junction Hemichannel on Its Channel Gating (간극결합채널의 아미노말단이 채널개폐에 미치는 영향)

  • Yim Jaegil;Cheon Misaek;Jung Jin;Oh Seunghoon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Gap junction is an ion channel forming between adjacent cells. It also acts as a membrane channel like sodium or potassium channels in a single cell. The amino acid residues up to the $10^{th}$ position in the amino (N)-terminus of gap junction hemichannel affect gating polarity as well as current-voltage (I-V) relation. While wild-type Cx32 channel shows negative gating polarity and inwardly rectifying I-V relation, T8D channel in which threonine residue at $8^{th}$ position is replaced with negatively charged aspartate residue shows reverse gating polarity and linear I-V relation. It is still unclear whether these changes are resulted from the charge effect or the conformational change of the N-terminus. To clarify this issue, we made a mutant channel harboring cysteine residue at the $8^{th}$ position (T8C) and characterized its biophysical properties using substituted-cysteine accessibility method (SCAM). T8C channel shows negative gating polarity and inwardly rectifying I-V relation as wild-type channel does. This result indicates that the substitution of cysteine residue dose not perturb the original conformation of wild-type channel. To elucidate the charge effect two types of methaenthiosulfonate (MTS) reagents (negatively charged $MTSES^-$ and positively charged $MTSET^+$) were used. When $MTSES^-$ was applied, T8C channel behaved as T8D channel, showing positive gating polarity and linear I-V relation. This result indicates that the addition of a negative charge changes the biophysical properties of T8C channel. However, positively charged $MTSET^+$ maintained the main features of T8C channel as expected. It is likely that the addition of a charge by small MTS reagents does not distort the conformation of the N-terminus. Therefore, the opposite effects of $MTSES^-$ and $MTSETT^+$ on T8C channel suggest that the addition of a charge itself rather than the conformational change of the N-terminus changes gating polarity and I-V relation. Furthermore, the accessibility of MTS reagents to amino acid residues at the $8^{th}$ position supports the idea that the N-terminus of gap junction channel forms or lies in the aqueous pore.