• Title/Summary/Keyword: connection stiffness

Search Result 496, Processing Time 0.022 seconds

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Design of corrugated sheets exposed to fire

  • Sokol, Zdenek;Wald, Frantisek;Kallerova, Petra
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • This paper presents results of fire tests on corrugated sheets used as load bearing structure of roofs of industrial buildings. Additional tests of bolted sheet connections to the supporting structure at ambient and elevated temperatures are described. Three connection types were tested and their resistance, stiffness and deformation capacity was evaluated. Finite element simulations of the corrugated sheet based on the experimental observations are briefly described and design models are presented.

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Nonlinear Behaviors of Mixed Structure Considering Advanced Connection Types (개선된 접합부 방식을 갖는 혼합구조의 비선형 거동)

  • Huh, Taik-Nyung;Yun, Ik-Jung;Kim, Mun-Kyum;Cho, Sung-Yong;Shim, Byul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.677-682
    • /
    • 2007
  • Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general finite element analysis computer program(ABAQUS). The present analysis focuses on the enhancing behaviors of mixed structure's connection type. Main 2 issues are related with discontinuity which reduce the stiffness of structure and proposing enhanced connection type. To validate the present study approaching 2 way, analytic one and experimental test.

  • PDF

Behavior of steel storage pallet racking connection - A review

  • Chen, Chulin;Shi, Lei;Shariati, Mahdi;Toghroli, Ali;Mohamad, Edy Tonnizam;Bui, Dieu Tien;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.457-469
    • /
    • 2019
  • Steel pallet racking industry has globally used from the industrial revolution and has deeply evolved from hot-rolled profile into cold-formed profile to raise the optimization in engineering field. Nowadays, some studies regarding cold-formed steel profile have been performed, but fewer studies in terms of cold-formed pallet racking specifically in connection due to the semi-rigid behavior by lug-hooked into the upright have been conducted. The objective of this study is to review the related literature on steel storage racking connection behavior.

Effect of a two bearing lines deck on the bridge substructure

  • Shaker, Fatemeh;Rahai, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.117-129
    • /
    • 2022
  • This research evaluated the different types of deck to pier connections effects (one or two elastomeric bearing lines and rigid) on a concrete bridges. Three-dimensional bridge models behavior with different deck to pier connections and different distances of two bearing lines were studied under the service load. Also, the detailed connection system with two elastomeric bearing lines was modeled to evaluate the effect of changing distance between two-lines. Results indicated that the proper location of elastomeric bearings has a major impact on the transferring forces to the substructure. Double elastomeric bearing lines have a behavior between one line and rigid connections. Transferring bending moment to the substructure in two-lines is more than the corresponding value of the one line. Moreover, an increase in the distance of two-lines lead to a significant increase in the rotational stiffness of the connection, and an analytical solution was investigated for their relation. In fact, the semi-rigidity effect of this connection and its change due to the distance of bearings should be considered in the design process.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.