• 제목/요약/키워드: conjecture (*)

검색결과 428건 처리시간 0.024초

Biot의 원뿔곡선에 관한 conjecture의 재해석 (Reinterpretation of the Biot's conjecture on conics)

  • 김향숙;박혜경
    • East Asian mathematical journal
    • /
    • 제36권4호
    • /
    • pp.455-474
    • /
    • 2020
  • In this study, we investigate the latus rectum, one of the geometric measures of the conics, as one of the ways in which learners harmonize the geometric and algebraic approaches to conics from a pedagogical point of view. We also introduce the conical curve of Biot as presented in 'The Discourse on the Latus Rectum in conics(2013)' by Takeshi Sugimoto and reinterpret it for visualization and use as teaching material. Therefore, we expect that the importance of mathematical concepts will be recognized in conics and students can experience geometry learning that is explored in the school field and have a positive effect in developing the power to apply even in the context of applied problems.

THE NUMBER OF LINEAR SYSTEMS COMPUTING THE GONALITY

  • Coppens, Marc
    • 대한수학회지
    • /
    • 제37권3호
    • /
    • pp.437-454
    • /
    • 2000
  • Let C be a smooth k-gonal curve of genus g. We study the number of pencils of degree k on C. In case $g\geqk(k-a)/2$ we state a conjecture based on a discussion on plane models for C. From previous work it is known that if C possesses a large number of pencils then C has a special plane model. From this observation the conjectures are split up in two cases : the existence of some types of plane curves should imply the existence of curves C with a given number of pencils; the non-existence of plane curves should imply the non-existence of curves C with some given large number of pencils. The non-existence part only occurs in the range $k(k-1)/2\leqg\leqk(k-1)/2] if k\geq7$. In this range we prove the existence part of the conjecture and we also prove some non-existence statements. Those result imply the conjecture in that range for $k\leq10$. The cases $k\leq6$ are handled separately.

  • PDF

A Priori Boundary Estimations for an Elliptic Operator

  • Cho, Sungwon
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.273-277
    • /
    • 2014
  • In this article, we consider a singular and a degenerate elliptic operators in a divergence form. The singularities exist on a part of boundary, and comparable to the logarithmic distance function or its inverse. If we assume that the operator can be treated in a pointwise sense than distribution sense, with this operator we obtain a priori Harnack continuity near the boundary. In the proof we transform the singular elliptic operator to uniformly bounded elliptic operator with unbounded first order terms. We study this type of estimations considering a De Giorgi conjecture. In his conjecture, he proposed a certain ellipticity condition to guarantee a continuity of a solution.

Topological Imitations and Reni-Mecchia-Zimmermann's Conjecture

  • Kawauchi, Akio
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 2006
  • M. Reni has shown that there are at most nine mutually inequivalent knots in the 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. By observing that the Z-homology sphere version of M. Reni's result still holds, M. Mecchia and B. Zimmermann showed that there are exactly nine mutually inequivalent, knots in Z-homology 3-spheres whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds, and conjectured that there exist exactly nine mutually inequivalent, knots in the true 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. Their proof used an argument of AID imitations published in 1992. The main result of this paper is to solve their conjecture affirmatively by combining their argument with a theory of strongly AID imitations published in 1997.

  • PDF

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.

PAIRED HAYMAN CONJECTURE AND UNIQUENESS OF COMPLEX DELAY-DIFFERENTIAL POLYNOMIALS

  • Gao, Yingchun;Liu, Kai
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.155-166
    • /
    • 2022
  • In this paper, the paired Hayman conjecture of different types are considered, namely, the zeros distribution of f(z)nL(g) - a(z) and g(z)nL(f) - a(z), where L(h) takes the derivatives h(k)(z) or the shift h(z+c) or the difference h(z+c)-h(z) or the delay-differential h(k)(z+c), where k is a positive integer, c is a non-zero constant and a(z) is a nonzero small function with respect to f(z) and g(z). The related uniqueness problems of complex delay-differential polynomials are also considered.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

A CONJECTURE OF GROSS AND ZAGIER: CASE E(ℚ)tor ≅ ℤ/2ℤ OR ℤ/4ℤ

  • Dongho Byeon;Taekyung Kim;Donggeon Yhee
    • 대한수학회지
    • /
    • 제60권5호
    • /
    • pp.1087-1107
    • /
    • 2023
  • Let E be an elliptic curve defined over ℚ of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity contained in K. Gross and Zagier conjectured that if PK has infinite order in E(K), then the integer c · m · uK · |III(E/K)| $\frac{1}{2}$ is divisible by |E(ℚ)tor|. In this paper, we prove that this conjecture is true if E(ℚ)tor ≅ ℤ/2ℤ or ℤ/4ℤ except for two explicit families of curves. Further, we show these exceptions can be removed under Stein-Watkins conjecture.

N-quandles of Spatial Graphs

  • Veronica Backer Peral;Blake Mellor
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.311-335
    • /
    • 2024
  • The fundamental quandle is a powerful invariant of knots, links and spatial graphs, but it is often difficult to determine whether two quandles are isomorphic. One approach is to look at quotients of the quandle, such as the n-quandle defined by Joyce [8]; in particular, Hoste and Shanahan [5] classified the knots and links with finite n-quandles. Mellor and Smith [12] introduced the N-quandle of a link as a generalization of Joyce's n-quandle, and proposed a classification of the links with finite N-quandles. We generalize the N-quandle to spatial graphs, and investigate which spatial graphs have finite N-quandles. We prove basic results about N-quandles for spatial graphs, and conjecture a classification of spatial graphs with finite N-quandles, extending the conjecture for links in [12]. We verify the conjecture in several cases, and also present a possible counterexample.

A NEW CHARACTERIZATION OF ALTERNATING AND SYMMETRIC GROUPS

  • ALAVI S. H.;DANESHKHAW A.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.245-258
    • /
    • 2005
  • In this paper we prove that the alternating groups A_n, for n = p, p+1, p+2 and symmetric groups $S_n$, for n = p, p+1, where p$\ge$3 is a prime number, can be uniquely determined by their order components. As one of the important consequence of this characterization we show that the simple groups An, where n = p, p+1, P+2 and p$\ge$3 is prime, satisfy in Thompson's conjecture and Shi's conjecture.