Topological Imitations and Reni-Mecchia-Zimmermann's Conjecture

Dedicating this paper to Professor Yukio Matsumoto for his 60th birthday

Akio Kawauchi

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

e-mail: kawauchi@sci.osaka-cu.ac.jp

ABSTRACT. M. Reni has shown that there are at most nine mutually inequivalent knots in the 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. By observing that the Z-homology sphere version of M. Reni's result still holds, M. Mecchia and B. Zimmermann showed that there are exactly nine mutually inequivalent, knots in Z-homology 3-spheres whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds, and conjectured that there exist exactly nine mutually inequivalent, knots in the true 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. Their proof used an argument of AID imitations published in 1992. The main result of this paper is to solve their conjecture affirmatively by combining their argument with a theory of strongly AID imitations published in 1997.

1. Reni-Mecchia-Zimmermann's conjecture

Let M(K) be the double branched covering space branched along a knot K in the 3-sphere S^3 . By an affirmative solution of Thurston's 3-orbifold conjecture (cf. [1]), the following finiteness result became a folk result (see M. Reni and B. Zimmerman [16] for a general survey as well as M. Mecchia and B. Zimmermann [12]):

Finiteness Theorem. Given any knot K in S^3 , there are finitely many knots K' in S^3 with a homeomorphism $M(K') \cong M(K)$.

Then we may have a question asking how many (unoriented) knots K' in S^3 with a homeomorphism $M(K') \cong M(K)$ exist for any given knot K in S^3 . Here

Received March 15, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 57M25, 57M27.

Key words and phrases: knot, branched covering, hyperbolic manifold, topological imitation, Reni-Mecchia-Zimmermann's conjecture.

are some known examples.

Example 1.1. Let K_i $(i=1,2,\cdots,n)$ be mutually inequivalent, non-invertible, prime oriented knots in S^3 , and $K=K_1\#K_2\#\cdots\#K_n$. Then there are 2^{n-1} mutually inequivalent, unoriented knots $K'=K_1\#\pm K_2\#\cdots\#\pm K_n$ such that M(K') is homeomorphic to M(K).

Example 1.1 is proved by the uniqueness of prime decompositions of knots. We note that the 3-manifold M(K) has incompressible 2-spheres in this example.

Example 1.2. Let $K = P(p_1, p_2, \dots, p_n)$ be a pretzel knot (see [8] for example) such that n > 3 is odd and p_i $(i = 1, 2, \dots, n)$ are distinct odd integers > 1. Then there are $\frac{(n-1)!}{2}$ mutually inequivalent, unoriented knots $K' = P(p_1, p'_2, \dots, p'_n)$ with (p'_2, \dots, p'_n) the permutations of (p_2, \dots, p_n) such that M(K') is homeomorphic to M(K).

In Example 1.2, we note that M(K) is a Seifert manifold with incompressible tori, although it has no incompressible 2-sphere. Example 1.2 is proved by classification of pretzel knots and generalized into the Montesinos knots. Examples 1.1 and 1.2 are also regarded as a consequence of the property of a Conway mutation that any two Conway-mutant knots in S^3 have homeomorphic 2-fold branched covering spaces, observed by O. Ja. Viro [18] (see [8]). Using this property, we can show the following example from a technique of topological imitations in [5](see also [6]):

Example 1.3. For every integer $n \ge 1$, we have a hyperbolic knot K in S^3 such that M(K) is a torus sum of n hyperbolic pieces and there are exactly 3^{n-1} mutually inequivalent, unoriented knots K' with a homeomorphism $M(K') \cong M(K)$.

An idea of showing this example for $n \ge 2$ is to use the fact that for any given 2-string tangle T in a 3-ball B^3 , there are infinitely many tangle imitations (B^3, T^*) of (B^3, T) whose double branched covering spaces are mutually non-homeomorphic, hyperbolic 3-manifolds with isometry group Z_2 . We next observe the case that M(K) has no incompressible 2-sphere nor incompressible torus. By using an affirmative solution of Thurston's 3-orbifold conjecture, M(K) is a Seifert fiber space with at most 3 exceptional fibers or a hyperbolic 3-manifold. The following proposition is also known (cf. [16]):

Proposition 1.4. Let M(K) be a Seifert fiber space with at most 3 exceptional fibers.

- (1) Assume that $\pi_1(M(K))$ is a finite group. Then K is uniquely determined.
- (2) Assume that $\pi_1(M(K))$ is an infinite group. Then M(K) has 3 exceptional fibers and there are at most two knots K' with a homeomorphism $M(K') \cong M(K)$.

More concretely, we can always have a hyperbolic Montesinos knot with exactly three rational tangles as K'. If there is another knot as K', then M(K) must be a

Brieskorn manifold of a type (2, p, q) for coprime positive integers p, q with $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$ and in this case we have the torus knot T(p, q) of the type (p, q) as K'.

Proof. (1) is obtained from F. Waldhausen [19] if $M(K) = S^3$, C. D. Hodgson and J. H. Rubinstein [2] if M(K) is a lens space, and P. Kim [10] and J. M. Montesinos [13] if M(K) is in the other Seifert manifolds with finite fundamental groups.

(2) is proved as follows: Since $\pi_1(M(K))$ is infinite, the Seifert structure on M(K) is unique and the non-trivial covering involution t on M(K) preserves fibercircles of the Seifert structure setwise. If t reverses the orientation of a fiber-circle, then we have a Montesinos knot K_M with exactly three rational tangles as K' (cf. [13]). If t preserves the orientation of a fiber-circle, then we have a torus knot as K', for K' must be a fiber-circle of the t-orbit fibered space which is S^3 , meaning that K' is a torus knot T(p,q) of some type (p,q). Then M(K) must be a Brieskorn manifold $\Sigma(2,p,q)$ (see W. D. Neumann and F. Raymond [14] for its Seifert invariant). The condition that $\pi_1(M(K))$ is infinite is equivalent to the condition that $\frac{1}{p} + \frac{1}{q} \leq \frac{1}{2}$, which is equivalent to $\frac{1}{p} + \frac{1}{q} < \frac{1}{2}$ since p and q are coprime positive integers. To see that K_M is a hyperbolic knot, we first note that the non-trivial covering involution t on $M(K) = M(K_M)$ sends a generator g of the center $z(\pi_1(M(K)))$ (which is an infinite cyclic group because $\pi_1(M(K))$ is infinite) to the inverse g^{-1} of g. By the equivariant torus theorem, K_M is a simple knot meaning a hyperbolic or torus knot. If K_M is a torus knot, then t also sends g to g, so that $g^2 = 1$ in $z(\pi_1(M(K)))$, which is a contradiction. Hence K_M must be hyperbolic.

When M(K) is a hyperbolic 3-manifold, M. Reni proved the following result in [15]:

Theorem (M. Reni). For a hyperbolic 3-manifold M(K), there are at most nine mutually inequivalent, unoriented knots K' in S^3 with a homeomorphism $M(K') \cong M(K)$.

In Reni's theorem, one comes to a question asking whether nine mutually inequivalent, unoriented knots K' exist. Observing that Reni's theorem still holds for knots in Z-homology 3-spheres, M. Mecchia and B. Zimmermann solved a homological version of this problem in [12]:

Z-Homology Version Theorem. There are nine mutually inequivalent, unoriented knots K_i in Z-homology 3-spheres S_i $(i = 1, 2, \dots, 9)$ whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.

Their proof uses an argument of AID imitations in [5]. By a similar method, they also showed (in [12]) that there are six mutually inequivalent, unoriented knots in the true 3-sphere S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds, and conjectured that there exist nine mutually inequivalent, unoriented knots in S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. The purpose of this paper is to show that their conjecture is true by combining their argument with an argument of strongly AID imitations in [7]. The result is stated as follows:

Theorem 1.5. There are nine mutually inequivalent, unoriented knots K_i ($i = 1, 2, \dots, 9$) in S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.

A disconnected link version of Reni's theorem and Theorem 1.5 has been already settled by M. Mecchia, M. Reni and B. Zimmermann. Some points of their results are stated as follows:

- M. Mecchia and M. Reni showed in [11] the 2-component link version of Reni's theorem, meaning that there are at most 9 mutually inequivalent, unoriented 2-component links in S^3 whose 2-fold covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. Then M. Mecchia and B. Zimmermann showed in [12] (by an argument of AID imitations in [5]) that there are 9 mutually inequivalent, unoriented 2-component links in S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.
- M. Mecchia and B. Zimmermann showed in [12] that for every $r(\geq 3)$, there are at most three mutually inequivalent, unoriented r-component links in S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds, and (by an argument of AID imitations in [5]) that for every $r(\geq 3)$, there are three mutually inequivalent, unoriented r-component links in S^3 whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.
- M. Mecchia and B. Zimmermann observed in [12] that any link version of Reni's theorem for links with non-fixed numbers of components splits into the link versions for links with fixed numbers of components stated above, because $H_1(M(L); Z_2) \cong Z_2^{r-1}$ for every r-component link L by a result of M. Sakuma [17], where M(L) denotes the 2-fold branched covering space along L.

In $\S 2$, we explain AID and strongly AID imitations. In $\S 3$, we give the proof of Main Theorem (Theorem 1.5) after an explanation of M. Mecchia-B. Zimmermann's proof of the Z-homology version theorem.

2. AID and strongly AID imitations

Let M be a closed connected oriented 3-manifold. Let Γ be a graph (without degree one vertices) in M. Possibly, $\Gamma = \emptyset$. Since we treat graphs as topological objects, we do not regard any degree-two vertex as a vertex. Thus, an edge e of Γ is a loop without vertices or a compact arc joining one or two vertices of degree ≥ 3 whose interior edge int $e = e - \partial e$ does not contain any vertex of degree (≥ 3). Let I = [-1, 1]. The concept of topological imitations comes from non-trivial reflections in the 4-dimensional object $(M, \Gamma) \times I = (M \times I, \Gamma \times I)$.

Definition 2.1. A reflection in $(M,\Gamma) \times I$ is a smooth involution α on $(M,\Gamma) \times I$ such that

- (1) $\alpha((M,\Gamma)\times 1)=(M,\Gamma)\times (-1)$, and
- (2) the fixed point set $\text{Fix}(\alpha, (M, \Gamma) \times I)$ is a pair of a 3-manifold and a graph in it.

By using this reflection, we define an imitation as follows:

Definition 2.2. An imitation $q:(M^*,\Gamma^*)\to (M,\Gamma)$ is the composite:

$$(M^*,\Gamma^*) \stackrel{\phi}{\longrightarrow} \operatorname{Fix}(\alpha,(M,\Gamma) \times I) \subset (M,\Gamma) \times I \stackrel{p}{\longrightarrow} (M,\Gamma),$$

where ϕ is a homeomorphism and p is the projection to the first factor.

See [3] for general properties of imitations. We need some notions of reflections as follows:

Definition 2.3. A reflection α in $(M, \Gamma) \times I$ is:

- (1) standard if $\alpha(x,t) = (x,-t)$ for all $(x,t) \in M \times I$,
- (2) normal if $\alpha(x,t) = (x,-t)$ for all $(x,t) \in \partial(M \times I) \cup N \times I$, where N is a tubular neighborhood of Γ in M,
- (3) isotopically standard if $f^{-1}\alpha f$ is standard for a diffeomorphism f of $M \times I$ with $f|_{\partial(M\times I)\cup N\times I}=1$ such that $[f]=1\in\pi_0 Diff(M\times I, \mathrm{rel}\partial(M\times I)\cup N\times I)$,
- (4) isotopically almost standard if α defines an isotopically standard reflection in $(M, \Gamma \text{int}e) \times I$ for any edge e of Γ .

The imitation $q:(M^*,\Gamma^*)\to (M,\Gamma)$ is normal or AID (= almost identical), respectively, if α is normal or isotopically almost standard. By definition, we have AID imitation \Rightarrow normal imitation. Further, if q is normal, then q defines a homeomorphism $\Gamma^*\to \Gamma$. If q is AID and $\Gamma\neq\emptyset$, then q defines a homeomorphism $M^*\to M$.

We assume that a finite group G acts on M faithfully and orientation-preservingly. For a subgroup H of G, let F(H,M) be the set of fixed points in M of every element of H (except the identity $1 \in H$). We note that the set F(H,M) is a graph in M unless it is empty. We denote the H-orbit 3-manifold of M by M_H and the H-orbit graph of F(G,M) by $F(G,M)_H$. Let $p_G^H: M_H \to M_G$ be the canonical (branched or unbranched) covering projection. We say that an edge e of $F(G,M)_H$ is unbranched if the number of connected components of $(p_G^H)^{-1}(p_G^H(\text{int}e))$ is equal to the index (G:H) of the subgroup H. The unbranched subgraph of $F(G,M)_H$ is the subgraph $F(G,M)_H \subset F(G,M)_H$ consisting of all the unbranched edges e of $F(G,M)_H$. By definition, we have $F(G,M)_G^u = F(G,M)_G$. We denote the H-orbit normal imitation of a G-equivareiant normal imitation $g:M^* \to M$ by $g_H:M_H^* \to M_H$. We note that the normal imitation g_H sends the unbranched subgraph $F(G,M)_H^u$ onto the unbranched subgraph $F(G,M)_H^u$ homeomorphically.

The existence theorem of an AID imitation is given as follows (see [4], [5] for a more general statement and the proof):

AID Imitation Theorem. Assume that $F(G, M) \neq \emptyset$. Then there is a G-equivariant normal imitation $q: M^* \to M$ such that

- (1) the G-orbit normal imitation map $q_G: (M_G^*, \mathcal{F}(G, M^*)_G) \to (M_G, \mathcal{F}(G, M)_G)$ is an AID imitation, and
- (2) the 3-manifold M^* is a hyperbolic 3-manifold with isometry group $Isom M^* = G$.

The existence theorem of a strongly AID imitation is given as follows (see [7] for a more general statement and the proof):

Strongly AID Imitation Theorem. Assume that $F(G, M) \neq \emptyset$. Then there is a G-equivariant normal imitation $q: M^* \to M$ such that

- (1) the H-orbit normal imitation map $q_H: (M_H^*, \mathcal{F}(G, M^*)_H^u) \to (M_H, \mathcal{F}(G, M)_H^u)$ is an AID imitation for every normal subgroup $H \subset G$ with $\mathcal{F}(G, M)_H^u \neq \emptyset$, and
- (2) the 3-manifold M^* is a hyperbolic 3-manifold with isometry group $\mathrm{Isom}M^*=G$.

A result given in [9] contains the result that the strongly AID imitation theorem still holds for every (not necessarily normal) subgroup $H \subset G$.

3. Proof of Reni-Mecchia-Zimmermann's conjecture

Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group. M. Mecchia and B. Zimmermann consider an order 32 subgroup $G = Q \times Q/\{(1,1),(-1,-1)\}$ of SO(4)acting orthogonally on S^3 with $S^3/G = S^3$. For $g_i \in Q$ (i = 1, 2), the element of G represented by $(g_1, g_2) \in Q \times Q$ is denoted by $g_1 \cdot g_2$. Then the center z(G) of G is the set $\{1\cdot 1, (-1)\cdot 1=1\cdot (-1)\}(\cong Z_2)$. When we denote by g_1*g_2 the element of G/z(G) represented by $g_1 \cdot g_2 \in G$, the quotient group $G/z(G) \cong \mathbb{Z}_2^4$ consists of the 16 elements 1*1, x*1, 1*y, $x*y \in G/z(G)$ (x, y = i, j, k). To understand the action of G on S^3 , the Kuratowsky graph in S^3 is introduced by them. Topologically, it is stated as follows: Let C be the unit circle in the plane $R^2 \times 0 \subset R^3$. Let a_i and $-a_i$ (i=1,2,3) be three mutually distinct pairs of antipodal points in C. Let e_1 be a proper trivial arc in the upper half space $R_+^3 = \{(x_1, x_2, x_3) \in R^3 | x_3 \ge 0\}$ with $\partial e_1 = \{a_1, -a_1\}$. Let e_2 be the interval $[a_2, -a_2] \subset \mathbb{R}^2 \times 0$. Let e_3 be a proper trivial arc in the lower half space $R^3_- = \{(x_1, x_2, x_3) \in R^3 | x_3 \leq 0\}$ with $\partial e_3 = \{a_3, -a_3\}$. The graph $\Lambda = C \cup e_1 \cup e_2 \cup e_3$ in $R^3 \cup \{\infty\} = S^3$ is called the Kuratowsky graph in S^3 . The Kuratowsky graph Λ has exactly six vertices (of degree 3) and nine edges, so that we have $H_1(\Lambda; \mathbb{Z}_2) = \mathbb{Z}_2^3$, and by Alexander duality, $H_1(S^3 - \Lambda; Z_2) = Z_2^4 \cong G/z(G)$. Then we see that there is a G/z(G)-regular branched covering $p': P^3 \to S^3$ branched along Λ . Then the nine elements

 $x * y \in G/z(G)$ (x, y = i, j, k) are understood as the monodromies of the nine edges of Λ among which we have a local relation $(x_1 * y_1)(x_2 * y_2)(x_3 * y_3) = 1 * 1$ around every vertex. We color the edges of Λ by x*y (x, y = i, j, k) so as to satisfy this local relation around every vertex. Let $p: S^3 \to S^3$ be the composite branched covering of the G/z(G)-regular branched covering $p': P^3 \to S^3$ and the double unbranched covering $p'': S^3 \to P^3$. This branched covering is a desired G-regular branched covering branched along the Kratowsky graph Λ , giving the action of G on S^3 . Let Γ be the lift of Λ under the branched covering p. Let $H_{x*y} (\cong \mathbb{Z}_2^2)$ be the normal subgroup of G which is the preimage of the subgroup $\{1*1, x*y\} (\cong Z_2)$ of G/z(G) under the natural epimorphism $G \to G/z(G)$. For the x * y-colored edge e of Λ , we have a G/H_{x*y} -regular branched covering $p'_1: S^3 \to S^3$ branched along the subgraph $\Lambda - \text{int} e \subset \Lambda$ such that $(p'_1)^{-1}(e) = L_{x*y}$ is a Hopf link in S^3 and the G/z(G)regular branched covering $p': P^3 \to S^3$ is the composite of the G/H_{x*y} -regular
branched covering $p'_1: S^3 \to S^3$ and the double branched covering $p''_1: P^3 \to S^3$ branched along the Hopf link L_{x*y} . [Note: It suffices to check this result for a particular x * y, because we can easily see that for any two edges e, e' of Λ , there is an orientation-preserving homeomorphism $h: S^3 \to S^3$ with $h(\Lambda, e) = (\Lambda, e')$.] The branched covering $p: S^3 \to S^3$ is equal to the composite of the G/H_{x*y} -regular branched covering $p'_1: S^3 \to S^3$ and the natural H_{x*y} -regular branched covering $p_1'': S^3 \to S_{H_{x*y}}^3 = S^3$ branched along L_{x*y} . Further, the branched covering $p_1'': S^3 \to S^3$ is the composite of the double branched covering $p_{11}'': S^3 \to S^3$ branched along a trivial component O_{x*y} of L_{x*y} and the double branched covering $p_{12}'':S^3\to S^3$ branched along the lift $O_{x*y}''=(p_{11}'')^{-1}(L_{x*y}-O_{x*y})$ which is a trivial knot. We use the property that the nine elements $x \cdot y$ (x, y = i, j, k) are mutually non-conjugate in G (although $x \cdot y$ and $(-x) \cdot y$ are conjugate). To prove Reni-Mecchia-Zimmermann's conjecture, we first explain M. Mecchia-B. Zimmermann's proof of the Z-homology version theorem.

3.1 M. Mecchia-B. Zimmermann's proof.

We apply the AID imitation theorem to S^3 with G-action, induced from the G-regular branched covering $S^3 \to S^3$ branched along the Kratowsky graph Λ . Then we have a G-equivariant normal imitation $q:M\to S^3$ such that M is a hyperbolic 3-manifold with IsomM=G and the G-orbit map $q_G:(M_G, F(G,M)_G)\to (S^3_G, F(G,S^3)_G)=(S^3,\Lambda)$ is an AID imitation. By a property of an imitation, we see that M is a Z-homology 3-sphere. By Mostow rigidity, the nine mutually non-conjugate elements $x\cdot y\in G$ (x,y=i,j,k) are considered as non-free involutive isometries on M. By $q_{x\cdot y}:M_{x\cdot y}\to S^3_{x\cdot y}$, we denote the $\{(1,1),(x,y)\}$ -orbit normal imitation of $q:M\to S^3$. By construction, $S^3_{x\cdot y}$ is homeomorphic to S^3 and the canonical map $S^3\to S^3_{x\cdot y}$ is the double branched covering branched along the trivial knot O''_{x*y} . Since $q_{x\cdot y}$ is a normal imitation, it follows from some properties of an imitation that $M_{x\cdot y}$ is a Z-homology 3-sphere and the canonical map $M\to M_{x\cdot y}$ is the 2-fold branched covering branched along a knot $K_{x\cdot y}$ which is the lift of the double branched covering $S^3\to S^3_{x\cdot y}$ branched along the trivial knot O''_{x*y} by the normal imitation $q_{x\cdot y}$. Assume that there is a homeomorphism $h:M_{x\cdot y}\to M_{x'\cdot y'}$ such that

 $h(K_{x\cdot y})=K_{x'\cdot y'}$ for some x',y'=i,j,k. Then for the isometries $x\cdot y,x'\cdot y'\in G$, there is an isometry $\omega\in G$ of M induced from h such that $\omega(x\cdot y)\omega^{-1}=x'\cdot y'$. Since $x\cdot y\in G$ (x,y=i,j,k) are mutually non-conjugate, we have $x\cdot y=x'\cdot y'$. Hence the knots $K_{x\cdot y}$ in $M_{x\cdot y}$ (x,y=i,j,k) must be mutually distinct. This completes the proof of the Z-homology version theorem by M. Mecchia-B. Zimmermann. \square

We are in a position to prove Theorem 1.5 (Reni-Mecchia-Zimmermann's conjecture). The method is analogous to M. Mecchia-B. Zimmermann's proof of the Z-homology version theorem if we use the strongly AID imitation theorem instead of the AID imitation theorem.

3.2 Proof of Theorem 1.5.

We apply the strongly AID imitation theorem to S^3 with the G-action. Then we have a G-equivariant normal imitation $q:M\to S^3$ such that M is a hyperbolic 3-manifold with $\operatorname{Isom} M=G$ and for every normal subgroup $H\subset G$ with $\operatorname{F}(G,S^3)_H^u\neq\emptyset$, the H-orbit normal imitation map $q_H:(M_H,\operatorname{F}(G,M)_H^u)\to (S_H^3,\operatorname{F}(G,S^3)_H^u)$ is an AID imitation. By the same argument as in 3.2, we have mutually distinct knots $K_{x\cdot y}$ in the Z-homology 3-spheres $M_{x\cdot y}$ (x,y=i,j,k) whose double branched covering spaces are the same homology 3-sphere M. In our case, we shall show that $M_{x\cdot y}=S^3$ for all x,y. Since $\operatorname{F}(G,S^3)_{H_{x*y}}^u=L_{x*y}$, a Hopf link in $S_{H_{x*y}}^3=S^3$, we see from a property of a strongly AID imitation that the H_{x*y} -orbit normal imitation map $q_{H_{x*y}}:(M_{H_{x*y}},\operatorname{F}(G,M)_{H_{x*y}}^u)\to (S^3,L_{x*y})$ is an AID imitation. Thus, we see that $M_{H_{x*y}}=S^3$ and the link $\operatorname{F}(G,M)_{H_{x*y}}^u$ consists of two trivial components. Since $M_{x\cdot y}$ is the double branched covering of $M_{H_{x*y}}=S^3$ branched along a trivial knot which is a component of the link $\operatorname{F}(G,M)_{H_{x*y}}^u$, we have $M_{x\cdot y}=S^3$ for every x,y=i,j,k. This completing the proof of Theorem 1.5, namely the Reni-Mecchia-Zimmermann's conjecture.

References

- [1] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Asterisque, 272(2001), 1-208.
- [2] C. D. Hodgson and J. H. Rubinstein, Involutions and isotopies of lens spaces, in: Knot Theory and Manifolds, Lect. Notes Math., 1144(1985), 60-96, Springer-Verlag.
- [3] A. Kawauchi, An imitation theory of manifolds, Osaka J. Math., 26(1989), 447-464.
- [4] A. Kawauchi, Almost identical imitations of (3,1)-dimensional manifolds pairs, Osaka J. Math., 26(1989), 743-758.
- [5] A. Kawauchi, Almost identical imitations of (3,1)-dimensional manifolds pairs and the branched coverings, Osaka J. Math., 29(1992), 299-327.
- [6] A. Kawauchi, Almost identical imitations of (3,1)-dimensional manifolds pairs and the manifold mutations, J. Austral. Soc. Ser. A, **55**(1993), 100-115.
- [7] A. Kawauchi, Topological imitations, in: Lectures at Knots 96, 19-37, World Scientific Publ., 1997.

- [8] A. Kawauchi, A survey of knot theory, (1966), Birkhäuser.
- [9] A. Kawauchi, A stronger concept of almost identical imitation of a (3,1)-dimensional manifold pair, preprint in revision.
- [10] P. Kim, Involutions on prism manifolds, Trans. Amer. Math. Soc., 268(1982), 377-409.
- [11] M. Mecchia and M. Reni, Hyperbolic 2-fold branched coverings of links and their quotients, Pacific J. Math., 202(2002), 429–447.
- [12] M. Mecchia and B. Zimmermann, The number of knots and links with the same 2-fold branched covering, Q. J. Math., 55(2004), 69–76.
- [13] J. M. Montesinos, Variedades de Seifert que son recubridadores ciclicos remificados de dos hojas, Bol. Soc. Mat. Mex., 18(1973), 1-32.
- [14] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, μ -invariant and orientation reversing maps, in: Algebraic and geometric topology, Lecture Notes in Math., **664**(1978), 163-196, Springer-Verlag.
- [15] M. Reni, On π -hyperbolic knots with the same 2-fold branched coverings, Math. Ann., **316**(2000), 681-697.
- [16] M. Reni and B. Zimmermann, Hyperbolic 3-manifolds and cyclic branched coverings of knots and links, Atti Sem. Mat. Fis. Univ. Modena, 49(2001), 135-153.
- [17] M. Sakuma, Homology of abelian coverings and spatial graphs, Canada. J. Math., 47(1995), 201-224.
- [18] O. Ya. Viro, Two-fold branched coverings of three-sphere, J. Soviet Math., 8-5(1977), 531-553.
- [19] F. Waldhausen, Über Involutionen der 3-Sphäre, Topology, 8(1969), 81-91.