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Abstract. M. Reni has shown that there are at most nine mutually inequivalent knots

in the 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyper-

bolic 3-manifolds. By observing that the Z-homology sphere version of M. Reni’s result

still holds, M. Mecchia and B. Zimmermann showed that there are exactly nine mutually

inequivalent, knots in Z-homology 3-spheres whose 2-fold branched covering spaces are

mutually homeomorphic, hyperbolic 3-manifolds, and conjectured that there exist exactly

nine mutually inequivalent, knots in the true 3-sphere whose 2-fold branched covering

spaces are mutually homeomorphic, hyperbolic 3-manifolds. Their proof used an argu-

ment of AID imitations published in 1992. The main result of this paper is to solve their

conjecture affirmatively by combining their argument with a theory of strongly AID imi-

tations published in 1997.

1. Reni-Mecchia-Zimmermann’s conjecture

Let M(K) be the double branched covering space branched along a knot K
in the 3-sphere S3. By an affirmative solution of Thurston’s 3-orbifold conjecture
(cf. [1]), the following finiteness result became a folk result (see M. Reni and B.
Zimmerman [16] for a general survey as well as M. Mecchia and B. Zimmermann
[12]):

Finiteness Theorem. Given any knot K in S3, there are finitely many knots K ′

in S3 with a homeomorphism M(K ′) ∼= M(K).

Then we may have a question asking how many (unoriented) knots K ′ in S3

with a homeomorphism M(K ′) ∼= M(K) exist for any given knot K in S3. Here
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are some known examples.

Example 1.1. Let Ki (i = 1, 2, · · · , n) be mutually inequivalent, non-invertible,
prime oriented knots in S3, and K = K1#K2# · · ·#Kn. Then there are 2n−1

mutually inequivalent, unoriented knots K ′ = K1# ± K2# · · ·# ± Kn such that
M(K ′) is homeomorphic to M(K).

Example 1.1 is proved by the uniqueness of prime decompositions of knots. We
note that the 3-manifold M(K) has incompressible 2-spheres in this example.

Example 1.2. Let K = P (p1, p2, · · · , pn) be a pretzel knot (see [8] for example)
such that n > 3 is odd and pi (i = 1, 2, · · · , n) are distinct odd integers > 1. Then
there are (n−1)!

2 mutually inequivalent, unoriented knots K ′ = P (p1, p
′
2, · · · , p′n)

with (p′2, · · · , p′n) the permutations of (p2, · · · , pn) such that M(K ′) is homeomor-
phic to M(K).

In Example 1.2, we note that M(K) is a Seifert manifold with incompressible
tori, although it has no incompressible 2-sphere. Example 1.2 is proved by classifi-
cation of pretzel knots and generalized into the Montesinos knots. Examples 1.1 and
1.2 are also regarded as a consequence of the property of a Conway mutation that
any two Conway-mutant knots in S3 have homeomorphic 2-fold branched covering
spaces, observed by O. Ja. Viro [18] (see [8]). Using this property, we can show the
following example from a technique of topological imitations in [5](see also [6]):

Example 1.3. For every integer n = 1, we have a hyperbolic knot K in S3 such
that M(K) is a torus sum of n hyperbolic pieces and there are exactly 3n−1 mutually
inequivalent, unoriented knots K ′ with a homeomorphism M(K ′) ∼= M(K).

An idea of showing this example for n = 2 is to use the fact that for any given 2-
string tangle T in a 3-ball B3, there are infinitely many tangle imitations (B3, T ∗) of
(B3, T ) whose double branched covering spaces are mutually non-homeomorphic,
hyperbolic 3-manifolds with isometry group Z2. We next observe the case that
M(K) has no incompressible 2-sphere nor incompressible torus. By using an affir-
mative solution of Thurston’s 3-orbifold conjecture, M(K) is a Seifert fiber space
with at most 3 exceptional fibers or a hyperbolic 3-manifold. The following propo-
sition is also known (cf. [16]):

Proposition 1.4. Let M(K) be a Seifert fiber space with at most 3 exceptional
fibers.

(1) Assume that π1(M(K)) is a finite group. Then K is uniquely determined.

(2) Assume that π1(M(K)) is an infinite group. Then M(K) has 3 exceptional
fibers and there are at most two knots K ′ with a homeomorphism M(K ′) ∼=
M(K).

More concretely, we can always have a hyperbolic Montesinos knot with exactly
three rational tangles as K ′. If there is another knot as K ′, then M(K) must be a
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Brieskorn manifold of a type (2, p, q) for coprime positive integers p, q with 1
p + 1

q < 1
2

and in this case we have the torus knot T (p, q) of the type (p, q) as K ′.

Proof. (1) is obtained from F. Waldhausen [19] if M(K) = S3, C. D. Hodgson and
J. H. Rubinstein [2] if M(K) is a lens space, and P. Kim [10] and J. M. Montesinos
[13] if M(K) is in the other Seifert manifolds with finite fundamental groups.

(2) is proved as follows: Since π1(M(K)) is infinite, the Seifert structure on
M(K) is unique and the non-trivial covering involution t on M(K) preserves fiber-
circles of the Seifert structure setwise. If t reverses the orientation of a fiber-circle,
then we have a Montesinos knot KM with exactly three rational tangles as K ′ (cf.
[13]). If t preserves the orientation of a fiber-circle, then we have a torus knot as K ′,
for K ′ must be a fiber-circle of the t-orbit fibered space which is S3, meaning that K ′

is a torus knot T (p, q) of some type (p, q). Then M(K) must be a Brieskorn manifold
Σ(2, p, q) (see W. D. Neumann and F. Raymond [14] for its Seifert invariant). The
condition that π1(M(K)) is infinite is equivalent to the condition that 1

p + 1
q 5 1

2 ,
which is equivalent to 1

p + 1
q < 1

2 since p and q are coprime positive integers. To see
that KM is a hyperbolic knot, we first note that the non-trivial covering involution
t on M(K) = M(KM ) sends a generator g of the center z(π1(M(K))) (which is an
infinite cyclic group because π1(M(K)) is infinite) to the inverse g−1 of g. By the
equivariant torus theorem, KM is a simple knot meaning a hyperbolic or torus knot.
If KM is a torus knot, then t also sends g to g, so that g2 = 1 in z(π1(M(K))),
which is a contradiction. Hence KM must be hyperbolic. ¤

When M(K) is a hyperbolic 3-manifold, M. Reni proved the following result in
[15]:

Theorem (M. Reni). For a hyperbolic 3-manifold M(K), there are at most nine
mutually inequivalent, unoriented knots K ′ in S3 with a homeomorphism M(K ′) ∼=
M(K).

In Reni’s theorem, one comes to a question asking whether nine mutually in-
equivalent, unoriented knots K ′ exist. Observing that Reni’s theorem still holds for
knots in Z-homology 3-spheres, M. Mecchia and B. Zimmermann solved a homo-
logical version of this problem in [12]:

Z-Homology Version Theorem. There are nine mutually inequivalent, unori-
ented knots Ki in Z-homology 3-spheres Si (i = 1, 2, · · · , 9) whose 2-fold branched
covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.

Their proof uses an argument of AID imitations in [5]. By a similar method,
they also showed (in [12]) that there are six mutually inequivalent, unoriented knots
in the true 3-sphere S3 whose 2-fold branched covering spaces are mutually home-
omorphic, hyperbolic 3-manifolds, and conjectured that there exist nine mutually
inequivalent, unoriented knots in S3 whose 2-fold branched covering spaces are mu-
tually homeomorphic, hyperbolic 3-manifolds. The purpose of this paper is to show
that their conjecture is true by combining their argument with an argument of
strongly AID imitations in [7]. The result is stated as follows:
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Theorem 1.5. There are nine mutually inequivalent, unoriented knots Ki (i =
1, 2, · · · , 9) in S3 whose 2-fold branched covering spaces are mutually homeomor-
phic, hyperbolic 3-manifolds.

A disconnected link version of Reni’s theorem and Theorem 1.5 has been already
settled by M. Mecchia, M. Reni and B. Zimmermann. Some points of their results
are stated as follows:

• M. Mecchia and M. Reni showed in [11] the 2-component link version of Reni’s
theorem, meaning that there are at most 9 mutually inequivalent, unoriented
2-component links in S3 whose 2-fold covering spaces are mutually homeomor-
phic, hyperbolic 3-manifolds. Then M. Mecchia and B. Zimmermann showed
in [12] (by an argument of AID imitations in [5]) that there are 9 mutu-
ally inequivalent, unoriented 2-component links in S3 whose 2-fold branched
covering spaces are mutually homeomorphic, hyperbolic 3-manifolds.

• M. Mecchia and B. Zimmermann showed in [12] that for every r(= 3), there
are at most three mutually inequivalent, unoriented r-component links in S3

whose 2-fold branched covering spaces are mutually homeomorphic, hyper-
bolic 3-manifolds, and (by an argument of AID imitations in [5]) that for
every r(= 3), there are three mutually inequivalent, unoriented r-component
links in S3 whose 2-fold branched covering spaces are mutually homeomor-
phic, hyperbolic 3-manifolds.

• M. Mecchia and B. Zimmermann observed in [12] that any link version of
Reni’s theorem for links with non-fixed numbers of components splits into
the link versions for links with fixed numbers of components stated above,
because H1(M(L); Z2) ∼= Zr−1

2 for every r-component link L by a result of M.
Sakuma [17], where M(L) denotes the 2-fold branched covering space along
L.

In §2, we explain AID and strongly AID imitations. In §3, we give the proof of
Main Theorem (Theorem 1.5) after an explanation of M. Mecchia-B. Zimmermann’s
proof of the Z-homology version theorem.

2. AID and strongly AID imitations

Let M be a closed connected oriented 3-manifold. Let Γ be a graph (without
degree one vertices) in M . Possibly, Γ = ∅. Since we treat graphs as topological
objects, we do not regard any degree-two vertex as a vertex. Thus, an edge e of Γ
is a loop without vertices or a compact arc joining one or two vertices of degree = 3
whose interior edge inte = e− ∂e does not contain any vertex of degree (= 3). Let
I = [−1, 1]. The concept of topological imitations comes from non-trivial reflections
in the 4-dimensional object (M, Γ)× I = (M × I, Γ× I).

Definition 2.1. A reflection in (M, Γ)× I is a smooth involution α on (M, Γ)× I
such that
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(1) α((M, Γ)× 1) = (M, Γ)× (−1), and

(2) the fixed point set Fix(α, (M, Γ)× I) is a pair of a 3-manifold and a graph in
it.

By using this reflection, we define an imitation as follows:

Definition 2.2. An imitation q : (M∗,Γ∗) → (M, Γ) is the composite:

(M∗, Γ∗)
φ−→ Fix(α, (M, Γ)× I) ⊂ (M, Γ)× I

p−→ (M, Γ),

where φ is a homeomorphism and p is the projection to the first factor.

See [3] for general properties of imitations. We need some notions of reflections
as follows:

Definition 2.3. A reflection α in (M, Γ)× I is:

(1) standard if α(x, t) = (x,−t) for all (x, t) ∈ M × I,

(2) normal if α(x, t) = (x,−t) for all (x, t) ∈ ∂(M × I) ∪ N × I, where N is a
tubular neighborhood of Γ in M ,

(3) isotopically standard if f−1αf is standard for a diffeomorphism f of M × I
with f |∂(M×I)∪N×I = 1 such that [f ] = 1 ∈ π0Diff(M × I, rel∂(M × I) ∪
N × I),

(4) isotopically almost standard if α defines an isotopically standard reflection in
(M, Γ− inte)× I for any edge e of Γ.

The imitation q : (M∗, Γ∗) → (M, Γ) is normal or AID (= almost identical),
respectively, if α is normal or isotopically almost standard. By definition, we have
AID imitation ⇒ normal imitation. Further, if q is normal, then q defines a home-
omorphism Γ∗ → Γ. If q is AID and Γ 6= ∅, then q defines a homeomorphism
M∗ → M .

We assume that a finite group G acts on M faithfully and orientation-
preservingly. For a subgroup H of G, let F(H,M) be the set of fixed points in M of
every element of H (except the identity 1 ∈ H). We note that the set F(H, M) is a
graph in M unless it is empty. We denote the H-orbit 3-manifold of M by MH and
the H-orbit graph of F(G,M) by F(G,M)H . Let pH

G : MH → MG be the canonical
(branched or unbranched) covering projection. We say that an edge e of F(G,M)H

is unbranched if the number of connected components of (pH
G )−1(pH

G (inte)) is equal
to the index (G : H) of the subgroup H. The unbranched subgraph of F(G,M)H

is the subgraph F(G,M)u
H ⊂ F(G,M)H consisting of all the unbranched edges

e of F(G,M)H . By definition, we have F(G,M)u
G = F(G,M)G. We denote the

H-orbit normal imitation of a G-equivareiant normal imitation q : M∗ → M by
qH : M∗

H → MH . We note that the normal imitation qH sends the unbranched
subgraph F(G,M∗)u

H onto the unbranched subgraph F(G,M)u
H homeomorphically.
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The existence theorem of an AID imitation is given as follows (see [4], [5] for a more
general statement and the proof):

AID Imitation Theorem. Assume that F(G,M) 6= ∅. Then there is a G-
equivariant normal imitation q : M∗ → M such that

(1) the G-orbit normal imitation map qG : (M∗
G,F(G,M∗)G) → (MG,F(G,M)G)

is an AID imitation, and

(2) the 3-manifold M∗ is a hyperbolic 3-manifold with isometry group IsomM∗ =
G.

The existence theorem of a strongly AID imitation is given as follows (see [7]
for a more general statement and the proof):

Strongly AID Imitation Theorem. Assume that F(G,M) 6= ∅. Then there is
a G-equivariant normal imitation q : M∗ → M such that

(1) the H-orbit normal imitation map qH : (M∗
H , F(G, M∗)u

H) → (MH , F(G, M)u
H)

is an AID imitation for every normal subgroup H ⊂ G with F(G,M)u
H 6= ∅,

and

(2) the 3-manifold M∗ is a hyperbolic 3-manifold with isometry group IsomM∗ =
G.

A result given in [9] contains the result that the strongly AID imitation theorem
still holds for every (not necessarily normal) subgroup H ⊂ G.

3. Proof of Reni-Mecchia-Zimmermann’s conjecture

Let Q = {±1,±i,±j,±k} be the quaternion group. M. Mecchia and B. Zim-
mermann consider an order 32 subgroup G = Q × Q/{(1, 1), (−1,−1)} of SO(4)
acting orthogonally on S3 with S3/G = S3. For gi ∈ Q (i = 1, 2), the element of G
represented by (g1, g2) ∈ Q×Q is denoted by g1 · g2. Then the center z(G) of G is
the set {1 · 1, (−1) · 1 = 1 · (−1)}(∼= Z2). When we denote by g1 ∗ g2 the element of
G/z(G) represented by g1 ·g2 ∈ G, the quotient group G/z(G)(∼= Z4

2 ) consists of the
16 elements 1∗1, x∗1, 1∗y, x∗y ∈ G/z(G) (x, y = i, j, k). To understand the action
of G on S3, the Kuratowsky graph in S3 is introduced by them. Topologically, it
is stated as follows: Let C be the unit circle in the plane R2 × 0 ⊂ R3. Let ai and
−ai (i = 1, 2, 3) be three mutually distinct pairs of antipodal points in C. Let e1

be a proper trivial arc in the upper half space R3
+ = {(x1, x2, x3) ∈ R3|x3 = 0}

with ∂e1 = {a1,−a1}. Let e2 be the interval [a2,−a2] ⊂ R2 × 0. Let e3 be a
proper trivial arc in the lower half space R3

− = {(x1, x2, x3) ∈ R3|x3 5 0} with
∂e3 = {a3,−a3}. The graph Λ = C ∪ e1 ∪ e2 ∪ e3 in R3 ∪ {∞} = S3 is called
the Kuratowsky graph in S3. The Kuratowsky graph Λ has exactly six vertices
(of degree 3) and nine edges, so that we have H1(Λ;Z2) = Z3

2 , and by Alexander
duality, H1(S3 − Λ; Z2) = Z4

2
∼= G/z(G). Then we see that there is a G/z(G)-

regular branched covering p′ : P 3 → S3 branched along Λ. Then the nine elements
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x ∗ y ∈ G/z(G) (x, y = i, j, k) are understood as the monodromies of the nine edges
of Λ among which we have a local relation (x1 ∗ y1)(x2 ∗ y2)(x3 ∗ y3) = 1 ∗ 1 around
every vertex. We color the edges of Λ by x∗y (x, y = i, j, k) so as to satisfy this local
relation around every vertex. Let p : S3 → S3 be the composite branched covering
of the G/z(G)-regular branched covering p′ : P 3 → S3 and the double unbranched
covering p′′ : S3 → P 3. This branched covering is a desired G-regular branched cov-
ering branched along the Kratowsky graph Λ, giving the action of G on S3. Let Γ be
the lift of Λ under the branched covering p. Let Hx∗y(∼= Z2

2 ) be the normal subgroup
of G which is the preimage of the subgroup {1 ∗ 1, x ∗ y}(∼= Z2) of G/z(G) under
the natural epimorphism G → G/z(G). For the x ∗ y-colored edge e of Λ, we have
a G/Hx∗y-regular branched covering p′1 : S3 → S3 branched along the subgraph
Λ − inte ⊂ Λ such that (p′1)

−1(e) = Lx∗y is a Hopf link in S3 and the G/z(G)-
regular branched covering p′ : P 3 → S3 is the composite of the G/Hx∗y-regular
branched covering p′1 : S3 → S3 and the double branched covering p′′1 : P 3 → S3

branched along the Hopf link Lx∗y. [Note: It suffices to check this result for a
particular x ∗ y, because we can easily see that for any two edges e, e′ of Λ, there is
an orientation-preserving homeomorphism h : S3 → S3 with h(Λ, e) = (Λ, e′).] The
branched covering p : S3 → S3 is equal to the composite of the G/Hx∗y-regular
branched covering p′1 : S3 → S3 and the natural Hx∗y-regular branched cover-
ing p′′1 : S3 → S3

Hx∗y
= S3 branched along Lx∗y. Further, the branched covering

p′′1 : S3 → S3 is the composite of the double branched covering p′′11 : S3 → S3

branched along a trivial component Ox∗y of Lx∗y and the double branched covering
p′′12 : S3 → S3 branched along the lift O′′x∗y = (p′′11)

−1(Lx∗y − Ox∗y) which is a
trivial knot. We use the property that the nine elements x · y (x, y = i, j, k) are
mutually non-conjugate in G (although x · y and (−x) · y are conjugate). To prove
Reni-Mecchia-Zimmermann’s conjecture, we first explain M. Mecchia-B. Zimmer-
mann’s proof of the Z-homology version theorem.

3.1 M. Mecchia-B. Zimmermann’s proof.
We apply the AID imitation theorem to S3 with G-action, induced from the G-

regular branched covering S3 → S3 branched along the Kratowsky graph Λ. Then
we have a G-equivariant normal imitation q : M → S3 such that M is a hyper-
bolic 3-manifold with IsomM = G and the G-orbit map qG : (MG,F(G,M)G) →
(S3

G, F(G, S3)G) = (S3, Λ) is an AID imitation. By a property of an imitation,
we see that M is a Z-homology 3-sphere. By Mostow rigidity, the nine mutually
non-conjugate elements x ·y ∈ G (x, y = i, j, k) are considered as non-free involutive
isometries on M . By qx·y : Mx·y → S3

x·y, we denote the {(1, 1), (x, y)}-orbit normal
imitation of q : M → S3. By construction, S3

x·y is homeomorphic to S3 and the
canonical map S3 → S3

x·y is the double branched covering branched along the trivial
knot O′′x∗y. Since qx·y is a normal imitation, it follows from some properties of an im-
itation that Mx·y is a Z-homology 3-sphere and the canonical map M → Mx·y is the
2-fold branched covering branched along a knot Kx·y which is the lift of the double
branched covering S3 → S3

x·y branched along the trivial knot O′′x∗y by the normal
imitation qx·y. Assume that there is a homeomorphism h : Mx·y → Mx′·y′ such that
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h(Kx·y) = Kx′·y′ for some x′, y′ = i, j, k. Then for the isometries x · y, x′ · y′ ∈ G,
there is an isometry ω ∈ G of M induced from h such that ω(x·y)ω−1 = x′ ·y′. Since
x · y ∈ G (x, y = i, j, k) are mutually non-conjugate, we have x · y = x′ · y′. Hence
the knots Kx·y in Mx·y (x, y = i, j, k) must be mutually distinct. This completes
the proof of the Z-homology version theorem by M. Mecchia-B. Zimmermann. ¤

We are in a position to prove Theorem 1.5 (Reni-Mecchia-Zimmermann’s con-
jecture). The method is analogous to M. Mecchia-B. Zimmermann’s proof of the
Z-homology version theorem if we use the strongly AID imitation theorem instead
of the AID imitation theorem.

3.2 Proof of Theorem 1.5.
We apply the strongly AID imitation theorem to S3 with the G-action. Then we

have a G-equivariant normal imitation q : M → S3 such that M is a hyperbolic 3-
manifold with IsomM = G and for every normal subgroup H ⊂ G with F(G,S3)u

H 6=
∅, the H-orbit normal imitation map qH : (MH , F(G, M)u

H) → (S3
H , F(G, S3)u

H) is
an AID imitation. By the same argument as in 3.2, we have mutually distinct knots
Kx·y in the Z-homology 3-spheres Mx·y (x, y = i, j, k) whose double branched cov-
ering spaces are the same homology 3-sphere M . In our case, we shall show that
Mx·y = S3 for all x, y. Since F(G,S3)u

Hx∗y
= Lx∗y, a Hopf link in S3

Hx∗y
= S3, we see

from a property of a strongly AID imitation that the Hx∗y-orbit normal imitation
map qHx∗y : (MHx∗y , F(G,M)u

Hx∗y
) → (S3, Lx∗y) is an AID imitation. Thus, we

see that MHx∗y = S3 and the link F(G,M)u
Hx∗y

consists of two trivial components.
Since Mx·y is the double branched covering of MHx∗y = S3 branched along a trivial
knot which is a component of the link F(G, M)u

Hx∗y
, we have Mx·y = S3 for every

x, y = i, j, k. This completing the proof of Theorem 1.5, namely the Reni-Mecchia-
Zimmermann’s conjecture. ¤
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