• Title/Summary/Keyword: conidial production

Search Result 58, Processing Time 0.025 seconds

Cultural Conditions for the Production of Saccharogenic Amylase During Rice-Koji Making by Aspergillus awamori var. kawachii (Aspergillus awamori var. kawachii에 의한 쌀 Koji제조시 당화효소의 생산조건)

  • 오명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.294-300
    • /
    • 1993
  • This study was carried out to investigate the influences of cultural conditions of koji on the production of saccharogenic amylase during rice-koji making by Aspergillus awamori var. kawachii which is now widely used as koji-mold in brewing Tikju and Yakju in Korea. The optimum cultural temperature for the production of saccharogenic amylase by this mold was 36$^{\circ}C$, and at this temperature it needed 40 hours of cultivation for maximum production of this enzyme. It was favorable for high production of both organic acid and saccharogenic amylase to shift the cultural temperature form initial 36$^{\circ}C$ to 32$^{\circ}C$ after 20~25 hours of cultivation. The production of saccharogenic amylase was low when the water content of steamed rice was below 35%, but its production was high at 40~60% of water content. When the quantity of conidial inoculation was too small, the production of saccharogenic amylase was low in initial phase, but it was retrived after 40 hours of cultivation. When koji-thickness was over 3cm, the production of saccharogenic amylase was markedly restricted. The saccharogenic amylase of this koji was stable at pH 2~7, and showed high activity at pH 2~5.

  • PDF

Cultural Conditions for the Production of Organic Acid During (Aspergillus awamori var. kawachii에 의한 쌀 Koji 제조시 유기산의 생산조건)

  • 소경환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.287-293
    • /
    • 1993
  • This study was carried out to investigate the influences of cultural conditions of koji on the production of organic acid during rice-koji making by Aspergillus awamori var. kawachii which is now widely used as koji-mold in brewing Takju and Yakju in Korea. The optimum temperature for the germination of the conidia of the mold was 35'8, and the time required for germination at this temperature was 8 hours. Rapid germination occurred when the water content of steamed rice was above 40%, but germination retardation occurred markedly below 35%. The optimum cultural temperature for the production of organic acid was 32$^{\circ}C$, and the production of organic acid was markedly restricted at 36$^{\circ}C$ and 4$0^{\circ}C$. It was effective for the high production of both saccharogenic amylase and organic acid to shift the cultural temperature from initial 36$^{\circ}C$ to 32$^{\circ}C$ after 20~25 hours of cultivation. Initial water content suitable to the production of organic acid was 40% in steamed rice, but its production was markedly restricted below 30% of water content. When the quantity of conidial inoculation was too small, the production of organic acid was low in initial phase, but it was retrived at later period. Acid production was markedly restricted together with the increase in koji thickness.

  • PDF

Cordyceps bassiana and Production of Stromata in vitro Showing Beauveria Anamorph in Korea

  • Sung, Jae-Mo;Lee, Je-O;Humber Richard A.;Sung, Gi-Ho;Shrestha Bhushan
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A Cordyceps species was found with a Beauveria anamorph state on larval insect cadavers on Obong mountains in Gangwon Provinces, Republic of Korea. Cultures from discharged ascospores formed an anamorph identifiable as Beauveria bassiana. This teleomorph-anamorph connection was also confirmed by the in vitro production of fertile ascomata from conidial cultures with morphology like that of field-collected specimen. This is the first report of in vitro production of a teleomorph for any Beauveria species. The Cordyceps species has been conspecified as Cordyceps bassiana, a species described from China with B. bassiana anamorph.

Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides

  • Hong, Jeum Kyu;Yang, Hye Ji;Jung, Heesoo;Yoon, Dong June;Sang, Mee Kyung;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for ecofriendly disease management of anthracnose during pepper fruit production.

Factors Affecting Sporulation of a Mycoherbicide, Epicoccosorus nematosporus, on the Lesion of Eleocharis kuroguwai

  • Hong, Yeon-Kyu;Hyun, Jong-Nae;Cho, Jae-Min;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.81-84
    • /
    • 2002
  • Effects of temperature and dew period on sporulation of a mycoherbicide, Epicoccosorus nematosporus, on the lesion of its host, Eleocharis kuroguwai were determined. Conidia formation was first observed after 10 days on plants incubated for either 12 or 16 h in a dew chamber at 28$^{\circ}C$; 16 h dew period resulted in more conidia formation. As the dew period was decreased to less than 8 h, fewer conidia formed. Conidial production was most abundant at 28$^{\circ}C$ and produced as much as 3.3$\times$10$^4$conidia per lesion, while 0.1$\times$10$^3$and 2.3$\times$10$^3$conidia per lesion were produced at 16$^{\circ}C$ and 36$^{\circ}C$, respectively. Alternating temperature regimes, i.e., 30/15, 30/20, 28/20, and 28/15$^{\circ}C$ (day/night) were much better than constant temperature, i.e., 30/30, 28/28/, and 20/2$0^{\circ}C$ for sporulation. In the second sporulation, there were as much as 3.1$\times$10$^4$conidia per lesion (ca. <50% of the first sporulation). Then, sporulation dropped sharply to 6.2$\times$10$^2$conidia per lesion in the third sporulation. Results of this study suggest that temperature combined with dew period is the primary limiting factor in the use of E. nematosporus as a mycoherbicide off, kuroguwai.

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo;Yu, Nan Hee;Lee, Jaeho;Choi, Gyung Ja;Kim, Jin-Cheol;Shin, Chul Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

The effect of irradiation and pH on sporulation and growth of Piricularia oryzae CAV. on tomato juice media (Tomato 즙배지의 pH와 조사광선이 도열병균 분생포자생성 및 균사생장에 미치는 영향)

  • Oh S. H.;Cho Y. S.;Lee S. C.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.19-24
    • /
    • 1965
  • In an attempt to find a satisfactory environmental factors which facilitate abundant conidial production of Piriculariaoryzae Cav. on tomato juice media, various environmental factors were studied for their effect on sporulation and mycelial growth of the fungus. Those factors were conditions of irradiation, color of light, age of culture and pH of the media. l) Continuous exposure to fluorescent light (Mitsubish FL-20-35 W) produced more conidia and much mycelial growth than did intermittent photoperiods and darkness. 2) Of 3 cellophane filters and direct exposure to fluorescent light used, conidia were produced best under the direct exposure to the light. Conidial production in color filter conditions sequently decreased with red, yellow and blue. Growth of mycelium was not significantly different within colors. 3) Periodic irradiation of 12-hour unit brought about zones on mycelial growth no matter what the color filter was used. 4) Older cultures responding to the light were more stimulated by light than were the younger one in the conidia production, but maximum production of conidia was 48 hours of age in this case. 5) Color of the mycelial mat and the aerial mycelium seemed to have a close relation to the production of conidia. The more darkness of the mycelial mat was produced the more conidia and the much aerial mycelium was produced the least conidia. The color of mycelium was more dark under the continuous irradiation than continuous darkness, while the periodic irradiation showed intermediate effect. 6) The concentration of hydrogen ion for growth and sporulation of the fungus was investigated the ranges between 5 and 9. The best pH for the fungus was also noted at 7. whereas the below of pH 4 was not occurred any mycelial growth and sporulation.

  • PDF

Mass Cultivation of A Hyperparasite, Ampelomyces quisqualis 94013 for Biological Control of Powdery Mildew (흰가루병 생물적 방제용 중복기생균 Ampelomyces quisqualis 94013의 대량배양)

  • Lee, Sang-Yeob;Kim, Yong-Ki;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • An isolate of Ampelomyces quisqualis 94013(AQ94013) was selected as an effective agent for biological control against cucumber powdery mildew. In order to develop mass production technique, six cereal media made with barley, rice, mille and brown rice, sorghumand rice seed were tested. Among them, barley medium was the best for the growth and conidial production of AQ94013. Optimum temperature for the mass production of AQ94013 was $25^{\circ}C$ and followed by $20^{\circ}C$ and $30^{\circ}C$. Light radiation inhibited conidial production of AQ94013 since number of conidia formed on barely medium under continuous light or 12 hrs alternative light were much less than cultured in darkness. Tthe conidia produced on the medium at $30^{\circ}C$ maintained the parasitic ability to Sphaerotheca fusca for 30 days. A culture method of AQ94013 in barley liquid medium with adding barely power(40 g/l) in darkness for five days at $25^{\circ}C$using a 30 l-fermenter was very effective for mass production of conidia.

Improved Method to Increase Conidia Production from Isolates of Different Pathotypes of Citrus Scab Pathogen Elsinoe spp.

  • Hyun, Jae-Wook;Paudyal, Dilli Prasad;Hwang, Rok-Yeon
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.231-234
    • /
    • 2015
  • Elsinoe fawcettii and E. australis are two currently recognized scab pathogens of citrus. E. fawcettii has at least six pathotypes while E. australis has at least two pathotypes. Colonies of E. fawcettii and E. australis do not sporulate in artificial media including potato dextrose agar (PDA). Whiteside's method has been widely used for preparing conidial inoculum in vitro. This study was carried out to develop efficient method for conidia production from artificial media. We developed a shaking method which included the following steps: 1) Colony grown on PDA was mashed with a steel spatula; 2) Mycelia fragments were cultured in 50 ml sterilized rain water in a rotary shaker-incubator (180 rpm) at $25^{\circ}C$ for 24 h: 3) The conidia suspension was filtered through two layers of cheesecloth. Average conidia production of all isolates tested using this shaking method was approximately 13.1 times higher than that from Whiteside's method in this study.