• Title/Summary/Keyword: congested traffic model

Search Result 56, Processing Time 0.023 seconds

A Calibration of the fundamental Diagram on the Type of Expressway (고속도로 유형별 교통류 모형 정산)

  • Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Hyunmyung;Han, Dong-Hee;Lee, Dong-Youn;Lee, Choong-Shik
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2014
  • PURPOSES: Used in transportation planning and traffic engineering, almost traffic simulation tools have input variable values optimized by overseas traffic flow attribution because they are almost developed in overseas country. Thus, model calibration appropriated for internal traffic flow attribution is needed to improve reliability of simulation method. METHODS : In this study, the traffic flow model calibration is based on expressways. For model calibration, it needs to define each expressway link according to attribution, thus it is classified by design speed, geometric conditions and number of lanes. And modified greenshield model is used as traffic flow model. RESULTS : The result of the traffic model calibration indicates that internal congested density is lower than overseas. And the result of analysis according to the link attribution indicates that the more design speed and number of lanes increase, the lower the minimum speed, the higher the congested density. CONCLUSIONS: In the traffic simulation tool developed in overseas, the traffic flow is different as design speed and number of lanes, but road segment don't affect traffic flow. Therefore, these results need to apply reasonably to internal traffic simulation method.

A Study on the development of a decision model on free flow and congested traffic conditions to determine the optimal ventilation capacity in highway tunnels (고속도로 터널의 적정 환기용량 계획을 위한 원활 및 지체조건 판별모델 개발에 대한 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.375-395
    • /
    • 2012
  • According to the local highway tunnel ventilation guideline, ventilation capacity calculation should be performed at the speed ranging from 10 km/h to 80 km/h. This is so reasonable method considering uncongested and congested traffic conditions in urban tunnels. But recently due to low traffic volume and very low congestion frequency in rural highway tunnels, it seems to be an inadequate way to apply the guideline. Therefore the calculation should be performed separately for the free flow and congested traffic cases classified by the appropriate decision model. This paper aims at determining unnecessary running speed range for reasonable tunnel ventilation design, considering free flow and congested traffic conditions. Firstly, traffic volumes in highway tunnels were collected and if any, the causes of congestion were investigated. And with concept of 'margin speed'($u-u_m$), the decision model on traffic congestion was developed. Applicability of the decision model was also analyzed with case study. According to the results, when design speed is 100 km/h, with V/C less than 0.1, then the range of unnecessary speed in tunnel ventilation design is less than 40 km/h; for $V/C{\leqq}0.35$, $V/C{\leqq}0.6$ and $V/C{\leqq}0.75$, the unnecessary speed ranges are found to be ${\leqq}30$, ${\leqq}20$ and ${\leqq}10km/h$, respectively.

A Traffic Assignment With Intersection Delay for Large Scale Urban Network (대규모 도시부 교통망에서의 이동류별 회전 지체를 고려한 통행배정연구)

  • Kang, Jin Dong;Woo, Wang Hee;Kim, Tae Gyun;Hong, Young Suk;Cho, Joong Rae
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.4
    • /
    • pp.3-17
    • /
    • 2013
  • The purpose of this study is to develop a traffic assignment model where the variable of signal intersection delay is taken into account in assigning traffic in large-scale network settings. Indeed, despite the fact that the majority of the increase in travel time or cost involving congested urban network or interrupted flow are accounted for by stop delays or congested delays at signal intersections, the existing traffic assignment models did not reflect this. The traffic assignment model considering intersection delays presented in this study was built based on the existing traffic assignment models, which were added to by the analysis technique for the computation of intersection delay provided in Korea Highway Capacity Manual. We can conclude that a multiple variety of simulation tests prove that this model can be applied to real network settings. Accordingly, this model shows the possibility of utilizing a model considering intersection delay for traffic policy decisions through analysis of effects of changes in traffic facilities on large urban areas.

Dynamic Capacity Concept and its Determination for Managing Congested Flow (혼잡교통류 관리를 위한 동적 용량의 개념 및 산정방법)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.159-166
    • /
    • 2004
  • The capacity concept presented in the Highway Capacity Manual is for steady-state traffic flow assuming that there is no restriction in downstream flowing, which is traditionally used for planning, design, and operational analyses. In the congested traffic condition, the control objective should be to keep the congested regime from growing and to recover the normal traffic condition as soon as possible. In this control case, it is important to predict the spatial-temporal pattern of congestion evolution or dissipation and to estimate the throughput reduction according to the spatial-temporal pattern. In this context, the new concept of dynamic capacity for managing congested traffic is developed in terms of spatial-temporal evolution of downstream traffic congestion and in view of the 'input' concept assuming that flow is restricted by downstream condition rather than the 'output' concept assuming that there is no restriction in downstream flowing (e.g. the mean queue discharge flow rate). This new capacity is defined as the Maximum Sustainable Throughput that is determined based on the spatial-temporal evolution pattern of downstream congestion. And the spatial-temporal evolution pattern is estimated using the Newell's simplified q-k model.

A Study on Characteristics of Traffic Flow in Congested Traffic at On-Ramp Influence Area (혼잡교통류 상태에서의 연결로 합류부 교통류 특성에 관한 기초 연구)

  • Kim, Sang-Gu;Kim, Young-Ho;Kim, Tae-Wan;Son, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.99-109
    • /
    • 2004
  • Most traffic congestion on a freeway occurs in the merge area, where conflicts between mainline traffic and on-ramp traffic are frequently generated. So far, research on the merge area has mainly dealt with free flow traffic and research on the congested traffic at the merge area is rare. This study investigates the relationships between mainline traffic and on-ramp traffic at three different segments of the merge area. For this purpose, new indicators based on such traffic variables as flow, speed, and density are used. The results show that a negative relationship exists between mainline and on-ramp flow. It is also found that the speed and the density of the right two lanes in the mainline traffic are significantly affected by the on-ramp flow. Based on the correlation analysis of the indicators, it is confirmed that the ramp influence area is the right two lanes of the freeway mainline. The revealed relationships between mainline and on-ramp traffic may help to analyze the capacity of the downstream freeway segment of the merging area in congested traffic. The findings of this studyalso provide a basis to develop a model that estimates the merge traffic volume in congested traffic, which is neither theoretically nor empirically sound in most other traffic flow models developed so far.

A Study on the traffic flow prediction through Catboost algorithm (Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구)

  • Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.58-64
    • /
    • 2021
  • As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium

  • Sung, Ki-Seok;Rakha, Hesham
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-69
    • /
    • 2009
  • A network model and a Genetic Algorithm (GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing a non-linear objective function with the linear constraints. In the model, the flow-conservation constraints are utilized to restrict the solution space and to force the link flows become consistent to the traffic counts. The objective of the model is to minimize the discrepancies between two sets of link flows. One is the set of link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links. The other is the set of link flows those are estimated through the trip distribution and traffic assignment using the path flow estimator in the logit-based SUE. In the proposed GA, a chromosome is defined as a real vector representing a set of Origin-Destination Matrix (ODM), link flows and route-choice dispersion coefficient. Each chromosome is evaluated by the corresponding discrepancies. The population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment technique is used during the crossover and mutation.

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

The Dynamic Flow Admission Control for Providing DiffServ Efficiently in MPLS Networks (MPLS 네트워크에서 DiffServ를 효율적으로 적용하기 위한 동적 흐름 수락 제어)

  • Im, Ji-Yeong;Chae, Gi-Jun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.45-54
    • /
    • 2002
  • MPLS(Multiprotocol Label Switching) is regarded as a core technology for migrating to the next generation Internet. In this paper, we propose an dynamic flow admission control supporting DiffServ(Differentiated Services) to provide QoS in MPLS networks. Our proposed model dynamically adjusts the amount of admissible traffic based on transmittable capacity over one outgoing port. It then transmits the Packets while avoiding congested area resulting traffic loss. Ingress LSRs find out the congested area by collecting network state information at QoS state update for QoS routing table. Our Proposed model manages the resource efficiently by protecting the waste of resources that is a critical Problem of DiffServ and makes much more flows enter the network to be served.