• Title/Summary/Keyword: conformational changes

Search Result 186, Processing Time 0.023 seconds

Conformational Studies of Macrocyclic Corrin-Ring of Coenzyme B12 by NMR methods

  • Kim, Daesung;Park, Jung-Rae;Hoshik Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • An enzyme derived conformational changes of cobalamine is thought to be important in the homolytic cleavage of Co-C bond which is the first step of catalytic Cl-cycle of coenzyme B12-dependent enzymes. Modern 2D-NMR and NMR-based distance geometric studies were carried out to determine the 3D structure of corrin ring. Homonuclear and heteronuclear correlation NMR experiments were performed for complete 1H-NMR signal assignments. Distances between numerous proton pairs were deduced based on the NOE cross peak intensities and subsequently used as input into the distance geometry program for the 3D structure determination. The detailed 3D structure from the present NMR-based analysis was compared with the result from X-ray crystallographic study, which revealed greater conformational changes occur in benzimidazole group and sugar ring than in macrocyclic corrin and tetrapyrrole. In addition, the distance geometry used in this study was found to be quite useful for NMR-based structure determination of medium-sized molecules that give poor NOE effects arising from their intermediate tumbling rate ($\omega$$\tau$c 1.0).

  • PDF

Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation

  • Nguyen, Minh Duc;Kim, Hee Ryung;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.4-11
    • /
    • 2017
  • Heterotrimeric G proteins are key intracellular coordinators that receive signals from cells through activation of cognate G protein-coupled receptors (GPCRs). The details of their atomic interactions and structural mechanisms have been described by many biochemical and biophysical studies. Specifically, a framework for understanding conformational changes in the receptor upon ligand binding and associated G protein activation was provided by description of the crystal structure of the ${\beta}2$-adrenoceptor-Gs complex in 2011. This review focused on recent findings in the conformational dynamics of G proteins and GPCRs during activation processes.

The Comparison of a Conformational Alteration of Ovalbumin Irradiated with Radiation of Gamma and Electron Beam (감마선 및 전자선 조사에 따른 Ovalbumin의 구조 변화 비교)

  • 변명우;서지현;김재훈;김미리;오남순;이주운
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1169-1174
    • /
    • 2004
  • This study was carried out to assess the effects of electron beam (EB) radiation on the conformational changes of ovalbumin (OVA), based on the early works using gamma irradiation. The applied doses of OVA used were 3,5,7, and 10 kGy, respectively. The conformational alterations were measured with SDS-PAGE, GPC-HPLC, and competitive indirect enzyme-linked immunosorbent assay (Ci-ELISA) using monoclonal anti-OVA IgG antibody. Irradiation caused a degradation and/or an aggregation of OVA molecule. Immunochemical structures of irradiated OVA were altered by irradiation. Effects of gamma and electron beam radiation were similar at the same absorbed doses. These results may be used for inhibition of food allergy and development of immunogen with EB radiation.

Substituent Effects on Conformational Changes in (+)-CSA Doped Polyaniline Derivatives

  • Lee, Eung;Kim, Eunok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2111-2116
    • /
    • 2013
  • This paper reports substituent effects on the conformational changes in polyaniline (PAni) derivatives. PAni, poly-o-toluidine (POT), and poly-o-anisidine (POA) were formed by potentiodynamic electropolymerization in aqueous solution containing (+)-camphorsulfonic acid (CSA) as a dopant. UV-Vis spectroscopy and cyclic voltammetry measurements revealed that the methyl group showed a greater steric hindrance than the methoxy group. Further, the doping level decreased with increasing steric hindrance. The sign pattern of the circular dichroism (CD) bands for POA was opposite to that for PAni. However, no CD bands were observed in POT. The steric hindrance caused helical inversion, but at a high level of steric hindrance, the helical conformation could not be adopted, because of the reduced doping level. The reduced crystallinity was greatly affected by the decreased doping level. The steric effect influenced the polymer conformation and the doping level, thus determining the optical activity, morphology, and crystallinity of the PAni derivatives.

Relation of Dynamic Changes in Interfacial Tension to Protein Destabilization upon Emulsification

  • Sah, Hong-Kee;Choi, Soo-Kyoung;Choi, Han-Gon;Yong, Chul-Soon
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.381-386
    • /
    • 2002
  • The objective of this study was to link conformational changes of proteins at a water/methylene chloride interface to their destabilization upon emulsification. When 4 aqueous protein solutions (bovine serum albumin, $\beta$-lactoglobulin, ovalbumin, or ribonuclease) were emulsified in methylene chloride, considerable proportions of all the proteins became water insoluble aggregates. There were also noticeable changes in the compositions of their water-soluble species. A series of water/methylene chloride interfacial reactions upon the proteins was considered a major cause of the phenomena observed. Based on this supposition, the interfacial tension was determined by a Kruss DVT-10 drop volume tensiometer under various experimental conditions. It substantiated that the interfacial tension was high enough to cause the adsorption of all the proteins. Under our experimental conditions, their presence in the aqueous phase resulted in reductions of the interfacial tension by the degrees of 8.5 - 17.1 mN $m^{-1}$. In addition, dynamic changes in the interfacial tension were monitored to compare relative rates at which the adsorbed proteins underwent conformational, structural rearrangements at the interface. Such information helped make a prediction about how easily proteins would denature and aggregate during emulsification. Our study indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, due to adverse interfacial effects.

FTIR spectroscopy of the two-photon product of sensory rhodopsin I

  • Sasaki, Jun;Kannaka, Masato;Kandori, Hideki;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.534-536
    • /
    • 2002
  • A halophilic archaeon, Halobacterium salinarum, exhibits phototactic behaviors, by which the organism is guided to red-orange light and evades shorter wavelengths of light. The phototaxis is mediated by two retinal proteins, sensory rhodopsin I and II (SRI and SRII), whose structures are analogous to the cognate protein bacteriorhodopsin, a light-driven proton pump. SRI mediates both attractant and repellent swimming behaviors to orange light and near- UV light, respectively. The two different signaling through the single photoreceptor have been ascribed to the presence of two active structures of SRI (S$\_$373/ and P$\_$520), which are produced upon orange light illumination of SRI and upon subsequent near-UV illumination of S$\_$373/, respectively. In the present study, we have measured the difference FTIR spectra of S$\_$373/ and P$\_$520/ states. In P$\_$520/, the isomeric structure of the chromophore is assignable to all-trans, and the Schiff base of the chromophore is protonated with concomitant deprotonation of Asp76, a combination which allows for the formation of a salt bridge between them. It was suggested that the way of interaction between the Schiff base and the counterion, which is different among SRI$\_$587/, S$\_$373/ and P$\_$520/ and which has been shown to drive the conformational changes in the cognate protein, bacteriorhodopsin, is the key to controlling conformational changes for the attractant and the repellent signaling by SRI.

  • PDF

The Study on Volumetric Transition Polymer Gel (체적상전이고분자 겔에 관한 연구)

  • 김정곤
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • Deuterium NMR studies have been carried out for two kinds of main- chain dimer liquid crystals $\alpha$.$\omega$-bis[(4,4`-cyanobipheny0oxy] alkane (CBA-n, n=9,100.The H-NMR spectra were recorded on a JEOP JNM-GSX-500 spectrometer by using deuterium labelled CBA-n at various temperatures. The RIS analysis of the NMR spectra was performed so as to elucidate the conformational characteristics of the spacer in the nematic phase. Following the previous treatment, the single-ordering-matrix model was adopted, in which the molecular axis was defined parallel to the line connecting the centers of the terminal mesogenic cores. Conformer fractions of the spacer were estimated by simulation so as to reproduce the observed NMR profile. The conformational entropy changes at both CN and NI interphases were estimated on the basis of the nematic conformations taken from the conformation map as well as those derived from the simulation. In these calculations the spacer was assumed th by in the all-trans conformation and in the random coil stats in the crystal and isotropic phases respectively. The esimated conformational entropy change values were then compared with the corresponding constant-volume entropies obtained from PVT measurements. The correspondence between both entropy values was found to be quite good in consideration of the uncertainties involved in both experiment and calculations.

  • PDF

Understanding Wet-End Polymer Performance through Visualization of Macromolecular Events by Transmission Electron Microscopy

  • Nanko, Hiroki;Mcneal, Michelyn;Pan, Shaobo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.1-18
    • /
    • 2006
  • A novel transmission electron microscopy technique for the visualization of polymers adsorbed on secondary fines has been developed. This technique has been utilized in observing the adsorption behavior of various wet-end additives. The technique is sensitive enough not only to allow differentiation between linear and branched polymers, but also to observe differences in the adsorption behavior and conformational characteristics of particular polymeric derivatives. Conformational changes of a cationic polyacrylamide (CPAM) were examined in response to variations in wet-end conditions, such as mixing time and system conductivity. The molecular conformations of cationic starch and cationic guar gum were also examined by this technique. The technique has been employed to observe the effects of silica microparticles on the conformational characteristics of CPAM (drainage/retention aid) pre-adsorbed on secondary fines. The transmission electron microscopy method is a viable tool for investigating the macromolecular events that make up a large part of wet end chemistry in papermaking.

  • PDF