• 제목/요약/키워드: confocal laser scanning microscopy (CLSM)

검색결과 76건 처리시간 0.037초

Visualization of Epidermis and Dermal Cells in ex vivo Human Skin Using the Confocal and Two-photon Microscopy

  • Choi, Sang-Hoon;Kim, Wi-Han;Lee, Yong-Joong;Lee, Ho;Lee, Weon-Ju;Yang, Jung-Dug;Shim, Jong-Won;Kim, Jin-Woong
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.61-67
    • /
    • 2011
  • The confocal laser scanning microscopy and two-photon microscopy was implemented based on a single laser source and an objective lens. We imaged and compared the morphology of identical sites of ex vivo human skin using both microscopes. The back-scattering emission from the sample provided the contrast for the confocal microscopy. The intrinsic autofluorescence and the second harmonic generation were used as the luminescence source for the two-photon microscopy. The wavelength of the Ti:Sapphire laser was tuned at 710 nm, which corresponds to the excitation peak of NADH and FAD in skin tissue. The various cell layers in the epidermis and the papillary dermis were clearly distinguished by both imaging modalities. The two-photon microscopy more clearly visualized the intercellular region and the nucleus of the cell compared to the confocal microscopy. The fibrous structures in the dermis were more clearly resolved by the confocal microscopy. Numerous cells in papillary dermal layer, as deep as $100\;{\mu}m$, were observed in both CLSM and two-photon microscopy. While most previous studies focused on fibrous structure imaging (collagen and elastin fiber) in the dermis, we demonstrated that the combined imaging with the CLSM and two-photon microscopy can be applied for the non-invasive study of the population, distribution and metabolism of papillary dermal cells in skin.

공초점반사현미경법을 이용한 섬유의 외부소섬유화 분석 (Analysis of External Fibrillation of Fiber by Confocal Reflection Microscopy)

  • 권오경
    • 펄프종이기술
    • /
    • 제46권2호
    • /
    • pp.35-45
    • /
    • 2014
  • Confocal Reflection Microscopy (CRM) was applied to investigate external fibrillation of different types of fibers such as Kajaani reference fiber, Whatman filter fiber, thermomechanical pulp (TMP), and recycled TMP fiber. It was confirmed that the CRM images are created from surface structures of the fiber cell wall. Confocal Laser Scanning Microscopy (CLSM) captured overall shape of the fiber, but minute details of the surface of the fiber were missed. CRM captured the minute details of the fiber surface. From the CRM and CLSM images, it was observed that the CRM images mainly appeared on the fiber surfaces. External fibrillation of the fiber occurs at the fiber surface, not inside the cell wall. Thus, it was concluded that investigation on the external fibrillation of the fiber was possible by utilizing CRM images. A direct qualtitative and quantitative method for analysis of external fibrillation of fiber was demonstrated by utilizing surface area to volume ratio, volume fraction, and roughness calculated from 3-dimensional images reconstructed from stacks of CRM images from the different fibers.

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

종이의 물성에 영향하는 섬유특성의 정량적 해석(II) (Quantitative Analysis of Pulp fiber Characteristics that Affect Paper Properties (II))

  • 이강진;박종문
    • 펄프종이기술
    • /
    • 제32권2호
    • /
    • pp.35-39
    • /
    • 2000
  • Refining is very important process of fibers treatment for proper paper properties. An extent of refining is usually measured by freeness, although freeness gives complicated meanings. One of a direct way of studying the refining effects on pulp fibers is making photomicrographs of beaten fibers. The conventional microscopy like light microscopy(LM) and scanning electron microscopy(SEM) require to preserve the wet structure of pulp fibers morphologically since most of papermaking process is carried out almost entirely in water. Recently developed microscopy, especially confocal laser scanning microscopy(CLSM), offers the possibility of examining fully hydrated pulp fibers. Cross-sectional images of wet pulp fibers are also generated using optical sectioning by CLSM and image analysis in order to verify and quantify the extent of fiber wall swelling indicating the internal fibrillation. At low beating load such as 2.5 kgf, in the same freeness, breaking length is higher than that of high beating load such as 5.6 kgf. fiber wall thickness at low beating load is greater than that at high beating load. This result is accounted for the fact that internal fibrillation in the low beating load was high.

  • PDF

Digital Imaging Fiber-Optic Trans-Illumination과 Laser Fluorescence를 이용한 평활면 초기우식증의 재광화에 관한 비교 연구 (COMPARATIVE STUDY ON THE EFFICACY OF DIGITAL IMAGING FIBER-OPTIC TRANS-ILLUMINATION AND LASER FLUORESCENCE IN MONITORING THE REMINERALIZATION PROCESS OF INCIPIENT SMOOTH SURFACE ENAMEL LESIONS)

  • 황규선;유승훈;김종수
    • 대한소아치과학회지
    • /
    • 제34권2호
    • /
    • pp.183-191
    • /
    • 2007
  • 본 연구는 Digital Imaging Fiber-Optic Trans-Illumination(DIFOTI)이나 Laser Fluorescence(LF)를 이용한 방법이 평활면 법랑질 초기우식증의 재광화 정도를 정확하게 monitoring 할 수 있는지의 여부를 평가하기 위하여 진행되었다. 우치 법랑질로부터 얻어진 인공 우식 절편을 특별히 제작된 의치에 식립한 다음, 10명의 실험 참가자들이 구강 내에 장착하고 3주 동안 불소 양치용액을 사용하도록 한 다음 Confocal Laser Scanning Microscopy(CLSM)로 측정된 병소 깊이를 gold standard로 사용하여 DIFOTI와 LF로 측정 된 우식 절편의 재광화 정도를 비교 평가한 후 다음과 같은 결론을 얻었다. 1. DIFOTI에 측정된 광도 백분율이 재광화 기간이 지남에 따라 증가하였으며, CLSM에서 측정된 병소 깊이와 유의한 역상관관계를 보였다(r=-0.683, p<0.01). 2. LF 측정치는 재광화 기간이 경과함에 따라 증가하였으며 CLSM에서 측정된 병소 깊이와 유의한 상관관계를 보였다(p<0.05). 3. CLSM 촬영 결과 500 ppm 불소 양치군이 0 ppm 불소 양치군보다 빠른 속도로 병소 깊이가 감소하는 양상을 보여 주었다.

  • PDF

Microbial and Physicochemical Monitoring of Granular Sludge During Start-up of Thermophilic UASB Reactor

  • Ahn, Yeong-Hee;Park, Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.378-384
    • /
    • 2003
  • Mesophilically-grown granular sludge seeded in thermophilic UASB reactor was monitored to better understand the start-up process of the reactor. The reactor was fed with a synthetic wastewater containing glucose. As COD loading rate increased stepwise, methane production rate increased. Maximum values of COD removal efficiency (95%) and methane production rate (5.3 l/day) were achieved by approximately day-80 and remained constant afterward. However, physicochemical and microbial properties of granules kept changing even after day-80. Specific methanogenic activity (SMA) was initially negligible, and increased continuously until day-153 and remained constant afterward, showing the maximum value of $1.51{\pm}0.13\;g\;CH_4-COD/g$ VSS/day. Deteriorated settling ability of granules recovered the initial value by day-98 and was maintained afterward, as determined by sludge volume index. Initially reduced granule size increased until day-126, reaching a plateau of 1.1 mm. Combined use of fluorescence in situ hybridization and confocal laser scanning microscopy (CLSM) allowed to localize families of Methanosaetaceae and Merhanosarcinaceae in granules with time Quantitative analyses of CLSM images of granule sections showed abundance patterns of the methanogens and numerical dominance of Methanosaeta spp. throughout the start-up period. The trend of SMA agreed well with abundance patterns of the methanogens.

양마의 인피섬유를 이용한 한지제조 (Hanji Manufacturing from Bast Fibers of Kenaf, Hibiscus cannabinus)

  • 조남석
    • 펄프종이기술
    • /
    • 제40권4호
    • /
    • pp.1-9
    • /
    • 2008
  • The utilization of non-woody fibers with the fast growing annual plants has occurred in the paper industry to replace wood and preserve environment of the earth. The non-woody fibers generally used for papermaking are paper mulberry, gampi, manila hemp, rice straw, bamboo, and coton linter etc.. Recently Kenaf has been spot-lighted for the same application. Kenaf is an annual plant of Hibiscus species of Malvaceae family. Kenaf, a rapid growing and high harvesting non-woody fiber plant, was identified as one of the promising fiber sources for the production of paper pulp. This study was carried out to investigate the pulping characteristics of Kenaf bast fiber for Hanji (traditional Korean paper) manufacturing by different pulping methods, such as alkali, alkali-peroxide and sulfomethylated pulpings. It was possible to make superior grade of Hanji. Especially sulfomethylated pulping was resulted in superior pulp in terms of higher yields and qualities in comparison to those of the other pulping methods. Hanji from sulfomethylated pulp was shown the highest brightness of over 60% and higher sheet strength. In addition, the morphological features of pulp fibers (pulp compositions) affect to the sheet properties. Therefore the effect of fiber distribution index(FDI) which was calculated from the data of Confocal laser scanning microscopy(CLSM) on the sheet properties of Kenaf Hanji was also discussed.

기름방울 형상 및 그 체적 분석법 (Droplet Geometry and Its Volume Analysis)

  • 윤문철
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.320-325
    • /
    • 2008
  • The recent industrial application requires technical methods to get the cutting fluid droplet surfaces in particular from the viewpoint of topography and micro texture. To characterize the surface topography of droplet, the combination of the confocal laser scanning microscope (CLSM) and wavelet filtering is well suited for obtaining the droplet geometry encountered in tribological research. This technique indicates a better agreement in obtaining an appropriate droplet surface obtained by the CLSM over a detail range of surface accuracy (resolution: $2{\mu}m$). And the results allow an excellent accuracy in a measurement of a droplet surface. The combination of extended focal depth measurement configured and multi-scale wavelet filtering has proven that it can construct a droplet surface in a successive and accurate way. A multi-scale approach of wavelet filtering was developed based on the decomposition and reconstruction of droplet surface by 2D wavelet transform using db9 (a mother wavelet of daubechies). Also this technique can be extended to characterize the quantification of droplet properties and other field in a wide range of scales. Finally this method is verified to be a better droplet surface modeling in a micro scale arising in a mist machining.

임상에서의 현미경: 작동, 유지보수 및 레이저 안전 (Clinical Microscopy: Performance, Maintenance and Laser Safety)

  • 이태복
    • 대한임상검사과학회지
    • /
    • 제51권2호
    • /
    • pp.125-133
    • /
    • 2019
  • 임상병리 검사분야에 있어서 환자로부터 유래된 조직이나 세포의 형태학적 변화, 세포 생리, 세포 내 분자의 추적 및 신호전달 체계 등의 임상검사 및 관련 연구를 위한 빼놓을 수 없는 주요한 진단과 연구장비로서 현미경이 가지는 의미는 크다고 할 수 있다. 현미경에 대한 포괄적인 지식과 이해를 바탕으로 현미경의 올바른 사용, 관리와 유지보수는 신뢰도 높은 이미지 획득과 그에 따른 정확한 데이터 분석을 통한 질병의 진단을 위해서 반드시 요구되는 부분이라고 할 수 있다. 광학현미경의 표준 운영 절차(standard operating procedure, SOP)는 현미경의 작동 절차와 함께 검사실 규모에 따른 현장 사용자의 체계적인 현미경 장해 해결 방안과 기계적 원리에 대한 핵심 정보가 함께 수록되어야 한다. 현미경 유지관리 업무에는 대물, 접안렌즈와 현미경 내부 광학필터의 청소, 광원의 교체와 교정, XY재물대 유지보수, 공초점 레이저 주사 현미경(confocal laser scanning microscope)에서의 점확산함수(point spread function, PSF) 측정, 형광현미경에서의 검사 품질관리(quality control, QC)와 체계적인 현미경 장해 해결방안 등이 포함되어야 한다. 본 종설에서는 국제적 기준에 따른 레이저의 위험도에 따라 일부 현미경에 장착된 레이저 광원에 대한 안전지침과 보호장구에 대한 내용을 함께 소개하였다. 현미경을 통해 획득된 이미지는 촬영된 시점의 검체에 대한 모든 정보를 제공한다고 할 수 있으며, 적절한 유지보수 프로그램과 그에 따라 적합하게 관리된 현미경만이 이미지 데이터를 통한 정보의 획득, 올바른 해석과 정확한 진단에 반드시 필요한 선제 조건들이라고 하겠다.

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.