• Title/Summary/Keyword: confinement stress-strain curves

Search Result 25, Processing Time 0.018 seconds

Numerical Study for the Estimation of Strengthening Effect of Concrete Column Strengthened with CFS (CFS 보강 콘크리트 기둥의 보강효과 산정을 위한 해석적 연구)

  • 이상호;허원석;박재우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.709-714
    • /
    • 1999
  • The objectives of this study are to estimate the strengthening effect of concrete column strengthened with CFS and to provide basic guideline for the strengthening design with laminated composite materials. Analysis stress-strain model of laminated CFS is presented based on laminate theory. This model has been implemented in the algorithm of evaluating confinement effect of CFS. From results of the algorithm, stress-strain relationship of confined concrete is obtained. Using this stress-strain relationship, section analyses of circular and rectangular concrete columns strengthened with CFS are carried our, and load-moment interaction and load-ductility curves of the columns are obtained. To evaluate the strengthening effects of CFS, parametric study is also conducted for the angle of ply, thickness of CFS, shape of section, and reinforcement ratio. Based on this investigation, design recommendations and basic guidelines for the strengthening design with CFS are proposed.

  • PDF

Investigations on the influence of radial confinement in the impact response of concrete

  • Al-Salloum, Yousef;Alsayed, Saleh;Almusallam, Tarek;Ibrahim, S.M.;Abbas, H.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.675-694
    • /
    • 2014
  • Annular and solid concrete specimens with different aspect ratios and static unconfined compressive strengths were studied for impact loading using SHPB test setup. Numerical simulations in LSDYNA were also carried out and results were validated. The stress-strain curves obtained under dynamic loading were also compared with static compressive tests. The mode of failure of concrete specimen was a typical ductile failure at high strain rates. In general, the dynamic increase factor (DIF) of thin solid specimens was higher than thick samples. In the numerical study, the variation of axial, hydrostatic and radial stresses for solid and annular samples was studied. The core phenomenon due to confinement was observed for solid samples wherein the applied loads were primarily borne by the innermost concrete zone rather than the outer peripheral zone. In the annular samples, especially with large diameter inside hole, the distribution of stresses was relatively uniform along the radial distance. Qualitatively, only a small change in the distribution of stresses for annular samples with different internal diameters studied was observed.

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

An Experimental Study on Uniaxial Compressive Behavior of RC Circular Columns Laterally Confined with Prestressing Aramid Fiber Strap (아라미드 스트랩으로 프리스트레싱 횡구속된 RC 원형기둥의 일축압축거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Lee, Jae-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.159-168
    • /
    • 2009
  • In this study, strength, stiffness and confinement effect with stress-strain and stress-volumetric strain curves for improved uniaxial compressive behavior of RC circular columns laterally confined with prestressing aramid fiber strap were experimentally investigated. The test variables were the specimens with or without axial reinforcing bar and the number and spacing of strap, prestressing level, the types of reinforcing fiber (CFS, GFS). As a result, the failure type of the columns was very stable and strength increase rate was about 73% comparison with the general RC columns. Moreover, the strain increase rate is very small and the axial displacement confinement effect was very effective compared with existry methods (CFS, GFS), the initial and final lateral confinement effect was excellent.

Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets

  • Ilki, Alper;Kumbasar, Nahit
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.75-90
    • /
    • 2002
  • Many existing concrete structures suffer from low quality of concrete and inadequate confinement reinforcement. These deficiencies cause low strength and ductility. Wrapping concrete by carbon fiber reinforced polymer (CFRP) composite sheets enhances compressive strength and deformability. In this study, the effects of the thickness of the CFRP composite wraps on the behavior of concrete are investigated experimentally. Both monotonic and repeated compressive loads are considered during the tests, which are carried out on strengthened undamaged specimens, as well as the specimens, which were tested and damaged priorly and strengthened after repairing. The experimental data shows that, external confinement of concrete by CFRP composite sheets improves both compressive strength and deformability of concrete significantly as a function of the thickness of the CFRP composite wraps around concrete. Empirical equations are also proposed for compressive strength and ultimate axial deformation of FRP composite wrapped concrete. Test results available in the literature, as well as the experimental results presented in this paper, are compared with the analytical results predicted by the proposed equations.

Low strength concrete members externally confined with FRP sheets

  • Ilki, Alper;Kumbasar, Nahit;Koc, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.167-194
    • /
    • 2004
  • In this paper axial loading tests on low strength concrete members, which were confined with various thickness of carbon fiber reinforced polymer (CFRP) composite sheets are described. Totally 46 specimens with circular, square and rectangular cross-sections with unconfined concrete compressive strengths between 6 and 10 MPa were included in the test program. During the tests, a photogrammetrical deformation measurement technique was also used, as well as conventional measurement techniques. The contribution of external confinement with CFRP composite sheets to the compressive behavior of the specimens with low strength concrete is evaluated quantitatively, in terms of strength, longitudinal and lateral deformability and energy dissipation. The effects of width/depth ratios and the corner radius of the specimens with rectangular cross-section on the axial behavior were also examined. It was seen that the effectiveness of the external confinement with CFRP composite sheets is much more pronounced, when the unconfined concrete compressive strength is relatively lower. It was also found that the available analytical expressions proposed for normal or high strength concrete confined by CFRP sheets could not predict the strength and deformability of CFRP confined low strength concrete accurately. New expressions are proposed for the compressive strength and the ultimate axial strain of CFRP confined low strength concrete.

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Experimental study of the torsion of reinforced concrete members

  • Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.713-737
    • /
    • 2006
  • This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.