• 제목/요약/키워드: confined pressure

검색결과 178건 처리시간 0.022초

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

섬유에 의하여 구속된 원형 콘크리트 기둥의 최대변형률 예측 (Prediction of the Maximum Strain of Circular Concrete Columns Confined with Fiber Composites)

  • 이정윤;정훈식
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.726-736
    • /
    • 2003
  • 섬유에 의하여 보강된 콘크리트의 압축강도와 최대 변형률은 현저하게 증가한다. 지난 10여년간 섬유보강 콘크리트의 구속효과에 대한 많은 연구가 수행되었지만, 기존 제안식의 대부분은 횡구속된 콘크리트의 압축강도 예측에 중점을 두고 있으며, 예측된 최대변형률은 실제값을 과대 또는 과소 평가하는 경향이 있다. 이 논문에서는 콘크리트 실린더 실험을 통해, 섬유보강된 콘크리트의 압축강도 및 최대변형률을 예측할 수 있는 평가식을 제안하였다. 구속콘크리트의 압축강도와 섬유의 파단강도 및 시험체의 크기효과를 고려하여 제안된 평가식은 기존의 제안식보다 정확하게 구속 콘크리트의 압축강도 및 최대 변형률을 예측하였다. 또한 섬유의 응력-변형률곡선의 특성을 고려하여 제안된 구속 콘크리트의 축방향 응력-변형률곡선은 탄소섬유에 의하여 구속된 콘크리트의 응력-변형률곡선을 기존의 제안식보다 정확하게 추적하였다.

Constitutive Model for a Confined Concrete Cylinder with an Unbonded External Steel Jacket

  • Roh, Young-Sook
    • Architectural research
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2015
  • Early investigations focused mainly on manipulating the confinement effect to develop a reinforced concrete column with lateral hoops. Based on this legacy model, Li's model incorporated the additional confinement effect of a steel jacket. However, recent experiments on plain concrete cylinders with steel jackets revealed relatively large discrepancies in the estimates of strength enhancement and the post-peak behavior. Here, we describe a modified constitutive law for confined concrete with an unbonded external steel jacket in terms of three regions for the loading stage. We used a two-phase heterogeneous concrete model to simulate the uniaxial compression test of a $150mm{\times}300mm$ concrete cylinder with three thicknesses of steel jackets: 1.0 mm, 1.5 mm, and 2.0 mm. The proposed constitutive model was verified by a series of finite element analyses using a finite element program. The damaged plasticity model and extended Drucker-Prager model were applied and compared in terms of the level of pressure sensitivity for confinement in 3D. The proposed model yielded results that were in close agreement with the experimental results.

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

전산유체역학을 이용한 제한수로에서의 선박 침하 해석 (Analysis of Ship Squat in Confined Water Using CFD)

  • 신현경;최시훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.317-324
    • /
    • 2011
  • When a ship proceeds in confined water, like canal, the water ahead of ship is pushed by hull. This pushed water returns to the side and under the hull, and this returned water will make fluid velocity higher at the side and under the hull, compared to the case in the infinite water depth. Due to the higher velocity, the pressure under the hull will decrease, resulting in the ship drop. This phenomenon is called "ship squat" and ship squat will result in various marine accidents. In this paper, for predicting ship squat, numerical calculation was carried out using commercial CFD code, FLUENT. To confirm wave pattern profile around the ship, VOF(Volume of Fluid) method was applied. The calculated results were compared with other paper's results and empirical methods.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

A failure criterion for RC members under triaxial compression

  • Koksal, Hansan Orhun
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.137-154
    • /
    • 2006
  • The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.

산화 그래핀 맴브레인의 물투과 속도와 차압 조건 간 상관관계에 대한 실험적 연구 (Experimental Study of Water Penetration Rate Via Graphene Oxide Membrane According to Driven Pressure Difference)

  • 김지민
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.858-864
    • /
    • 2018
  • Graphene oxide (GO) laminate is a new promising material for water purification system, which has extraordinary permeability only for water molecule. It consists of numerous nano-channels, in which water molecules could be nano-confined, resulting in slip of the molecules for very fast transportation speed. In this study, water penetration rate via different thickness of GO membrane according to driven pressures are measured experimentally, so that speed of water molecules and permeability are evaluated. Generally, water penetration rate via a membrane with macroscopic-sized channel increases linearly with pressure difference between up and bottom side of the membrane, but that via GO membrane approaches asymptotic value (i.e. saturation) as like a log function. Moreover, the permeability of GO membrane was observed in inverse proportion to its thickness. Based on the experimental observations, a correlation for volume flux via GO membrane was suggested with respect to its thickness and external pressure difference.

밀폐공간에서 가스폭발에 의한 개구발생 후의 압력변화에 대한 해석 (Analysis of the Pressure Behavior with the Partial Rupture in Closed Vessel During Gaseous Explosion)

  • 윤재건;조한창;신현동
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.40-47
    • /
    • 1999
  • A numerical study on gaseous explosion was carried out to predict the transient pressure behavior with the partial rupture in confined vessels. Equations, assumptions and solutions for central ignition of premixed gases in closed spherical vessels are proposed with various equivalence ratios of gas fuel, as $CH_4$ and $C_3H_8$, vent areas and vent opening pressures. Given vent opening pressure in a vessel, the magnitude of second peak pressure results from the vent areas and burning velocity, varied by equivalence ratio of gas fuel. In a living room of an apartment, the higher second peak pressure than the vent pressure is not appeared due to its large window areas. As vent opening pressure is higher, the larger damage by gaseous explosion is expected and the larger vent area is necessary for relieving the damage. In the same concentration, the gaseous explosion by propane rather than methane shows the larger damage due to its higher adiabatic flame temperature and equivalence ratio.

  • PDF

구속효과를 고려한 토목섬유의 인발저항력 평가기법 (Assessment Method of Geosynthetic Pullout Resistance Considering Soil Confinement Effect)

  • 방윤경;이준대;전영근
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.135-148
    • /
    • 2001
  • 본 연구에서는, 인장력과 이에 수직방향으로 작용하는 압축음력을 동시에 고려한 직교이방성 합성부재의 인장력-변형률 관계식(Bhagwan, Agarwal & Brouoan, 1990)을 응용하여, 토목섬유인발저항력 및 인장력에 미치는 구속응력의 영향을 정량적으로 평가할 수 있는 기법을 제시하였다. 이를 위해서, 국내에서 판매되고 있는 부직포, 직포, 복합포 및 지오그리드 등의 토목섬유를 대상으로 구속신장시험(Confined Extension Test) 및 실내인발시험(Laboratory Pull-out Test)을 수행하였다. 시험결과를 토대로하여 구속응력이 토목섬유의 인장력-변형률 거동에 미치는 영향을 분석하였고, 구속응력에 의한 토목섬유 인장력 및 인발저항력의 변화를 정량적으로 평가하였다. 분석결과, 구속응력의 크기가 증가할수록 토목섬유의 할선계수가 뚜렷이 증가하였으며, 본 연구 제안방법에 의한 토목섬유-흙 사이의 마찰저항각 $\delta\; 및\; 보정계수\; a^2$값이 기존의 인발저항력 평가방법에 비하여 다소 큰 값을 나타내어, 인발저항력 산정시 토목섬유에 가해지는 구속음력의 크기를 고려하는 본 연구 제시방법의 경우에 보다 큰 인발저항력이 얻어짐을 알 수 있었다.

  • PDF