DOI QR코드

DOI QR Code

A failure criterion for RC members under triaxial compression

  • Received : 2005.10.04
  • Accepted : 2005.05.13
  • Published : 2006.09.30

Abstract

The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.

Keywords

References

  1. Balmer, G.G. (1949), Shearing Strength of Concrete under High Triaxial Stress-Computations of Mohr's Envelope as a Curve, Structural Research Laboratory Report SP:23, US Bureau of Reclamation, Denver
  2. Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York
  3. Chung, H.S., Yang, K.H., Lee, Y.H. and Eun, H.C. (2002), 'Strength and ductility of laterally confined concrete columns', Can. J. Civ. Eng., 29(6), 820-830 https://doi.org/10.1139/l02-084
  4. Doran, B., Koksal, H.O., Polat, Z. and Karakoc, C. (1998), 'Betonarme Elemanlarda Sonlu Eleman Uygulamalarnda Drucker-Prager Akma Kriterlerinin Kullanlmas', IMO Teknik Dergi, 9(2), 1617-1625
  5. Doran, B. (2004), 'Elastic-plastic analysis of R/C coupled shear walls: The equivalent stiffness ratio of the tie elements', J. Indian Inst. of Sci., 83(3-4), 87-94
  6. Drucker, D.C. (1949), 'Relation of experiments to mathematical theories of plasticity', J. Appl. Mech., ASME, 16, 349-357
  7. Hsu, L.S. and Hsu, C.T.T. (1994), 'Complete stress-strain behaviour of high strength concrete under compression', Mag. Concr. Res., 46(169), 301-312 https://doi.org/10.1680/macr.1994.46.169.301
  8. Kent, D.C. and Park, R. (1971), 'Flexural members with confined concrete', J. Struct. Eng,. ASCE, 97(7), 1969-1990
  9. Karakoc, C. and Koksal, H.O. (1997), 'The modeling of concrete fracture', Studi e Ricerche, Politecnico di Milano, 18, 271-283
  10. Koksal, H.O., Karakoc, C. and Yildirim, H. (2003), 'Compressive strength of concrete hollow-block masonry', Studi e Ricerche, Politecnico di Milano, 24, 189-206
  11. Koksal, H.O., Doran, B., Ozsoy, E. and Alacali, S.N. (2004), 'Nonlinear modeling of concentrically loaded reinforced blockwork masonry columns', Canadian J. Civil Eng., 31(6), 1012-1023 https://doi.org/10.1139/l04-058
  12. Koksal, H.O. and Arslan, G. (2004), 'Damage analysis of RC beams without web reinforcement', Mag Caner. Res., 56(4), 231-242 https://doi.org/10.1680/macr.2004.56.4.231
  13. Lubliner, J., Oliver, L, Oller, S. and Onate, E. (1989), 'A plastic damage model for concrete', Int. J. Solids Struct., 25(3), 299-326 https://doi.org/10.1016/0020-7683(89)90050-4
  14. Mander, J.B., Priestley, M.J.N. and Park, R. (1988a), 'Theoretical stress-strain model for confined concrete', J. Struet. Eng., ASCE, 114(8), 1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  15. Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), 'Observed stress-strain behavior of confined concrete', J. Struct. Eng, ASCE, 114(8), 1827-1849 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
  16. Mills, L.L. and Zimmerman, R.M. (1970), 'Compressive strength of plain concrete under multi-axial loading conditions', ACI J., 67(10), 802-807
  17. Ottosen, N.S. (1977), 'A failure criterion for concrete', J. Eng Mech. Div., ASCE, 103(4), 527-535
  18. Phillips, D.V. and Bisheng, Z. (1993), 'Direct tension tests on notched and unnotched plain concrete specimens', Mag Concr. Res., 45(162), 25-35 https://doi.org/10.1680/macr.1993.45.162.25
  19. Razvi, S.R and Saatcioglu, M. (1989), 'Confinement of reinforced concrete columns with welded wire fabric', ACI Struct. J., 86(5), 615-623
  20. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), 'A study of the failure of concrete under combined compressive stresses', Bul 185, Univ. Illinois, Eng. Experimental Station, Champaign, III
  21. Saatcioglu, M. and Razvi, S.R. (1992), 'Strength and ductility of confined concrete', J. Struet. Eng., ASCE, 118(6),1590-1607 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
  22. Saenz, L.P. (1964), 'Discussion of 'Equation for the stress-strain curve of concrete' by Desayi and Krishnan', ACI J., 61(9), 1229-1235
  23. Scott, B.D., Park, R. and Priestly, M.J.N. (1982), 'Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates', ACI J., 79(1), 13-27
  24. Skeikh, S.A. and Uzumeri, S.M. (1980), 'Strength and ductility of tied concrete columns', J. Struct. Eng., ASCE, 106(5), 1079-1102
  25. Skeikh, S.A. and Uzumeri, S.M. (1982), 'Analytical model for concrete confinement in tied columns', J. Struct. Eng., ASCE, 108(12), 2703-2722
  26. William, K.J. and Warnke, E.P. (1975), 'Constitutive model for the triaxial behavior of concrete', Proc. Int. As. for Bridge and Struct. Eng, 19, 1-30

Cited by

  1. Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP vol.30, pp.8, 2009, https://doi.org/10.1016/j.matdes.2008.12.007
  2. Application of fuzzy logic approach in predicting the lateral confinement coefficient for RC columns wrapped with CFRP vol.88, 2015, https://doi.org/10.1016/j.engstruct.2015.01.039
  3. Stress–strain model for fibre-reinforced polymer confined rectangular columns vol.164, pp.6, 2011, https://doi.org/10.1680/stbu.2011.164.6.391
  4. Microplane constitutive model M4L for concrete. I: Theory vol.128, 2013, https://doi.org/10.1016/j.compstruc.2013.06.008
  5. Compressive behavior of large-scale square reinforced concrete columns confined with carbon fiber reinforced polymer jackets vol.31, pp.1, 2010, https://doi.org/10.1016/j.matdes.2009.06.008
  6. Computational material modeling of masonry walls strengthened with fiber reinforced polymers vol.48, pp.5, 2013, https://doi.org/10.12989/sem.2013.48.5.737
  7. Realistic simulation of reinforced concrete structural systems with combine of simplified and rigorous component model vol.30, pp.5, 2006, https://doi.org/10.12989/sem.2008.30.5.619
  8. A practical approach for modeling FRP wrapped concrete columns vol.23, pp.3, 2006, https://doi.org/10.1016/j.conbuildmat.2008.07.008
  9. Weibull distribution based constitutive model for nonlinear analysis of RC beams vol.61, pp.4, 2017, https://doi.org/10.12989/sem.2017.61.4.463