• 제목/요약/키워드: confined concrete model

검색결과 193건 처리시간 0.024초

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

횡구속된 콘크리트 기둥의 실험 및 해석 (Experiments and Analysis of Concrete Columns Confined with Lateral Reinforcements)

  • 송하원;최동휴;변근주;김기수
    • 콘크리트학회지
    • /
    • 제10권2호
    • /
    • pp.167-178
    • /
    • 1998
  • 횡방향철근에 의하여 적절히 구속된 콘크리트 기둥은 강도증가 및 연성의 확보면에서 유리하다. 본 연구의 목적은 횡방향철근에 의하여 구속된 코아콘크리트의 크기,횡방향철근의 간격비 및 체적철근비 등의 변화에 따른 콘크리트 기둥의 극한강도를 포함한 최대하중 이전의 거동 및 최대하중 이후의 거동을 실험적, 해석적으로 고찰함으로써 콘크리트 기둥의 구속효과정도를 규명하려는데 있다. 본 연구에서는 횡구속된 콘크리트 기둥모형의 압축재하실험을 수행하였으며, 최대하중 이전의 거동에 대하여 연속체적 파괴와 소성을 고려한 3차원 모델링을 통한유한요소해석을 실시하였다. 또한 횡구속된 콘크리트 기둥의 변형률국소화 모델에 의한 파괴해석을 통하여 구속된 콘크리트 기둥의 최대하중 이후의 거동을 재현하였다. 해석결과는 압축재하실험의 결과와 비교, 분석되었으며, 이에 따른 구속효과를 규명하였다.

Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석 (Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method)

  • 김기욱;박문호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.111-119
    • /
    • 2005
  • 철근콘크리트 전단벽 또는 플랜지 구조물의 해석시 비선형으로 인한 거동을 해석하여 파괴거동을 좀더 명확하고 신뢰성있게 예측하고자 하는데 본 연구의 목적이 있다. 콘크리트 응력-변형율 모델로는 Hognestad, Vallenas의 이론을 적용하고, 철근 응력-변형율 모델로는 Ramberg-Osgood 이론을 적용하였으며, 구속(confined) 및 비구속(unconfined)을 고려하여 비선형 해석을 수행하였다. 단면 해석 모델은 Mander가 제안한 층상화 단면해석을 적용하였고, 감마팩터를 고려한 새로운 변형율도를 이용하였다. 이러한 단면에 경계효과를 고려한 Boundary warping과 전단효과를 고려한 Shear warping 및 초기 균열을 고려한 경우(precracked)와 초기 균열이 발생하지 않은 경우(uncracked)로 구분하여 단면 해석을 시행하였다.

Ultimate strength and strain models proposed for CFRP confined concrete cylinders

  • Berradia, Mohammed;Kassoul, Amar
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.465-481
    • /
    • 2018
  • The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination ($R^2$) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef et al. (2007) which have relatively similar performance to the proposed models.

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석 (Analysis of FRP-Confined Concrete According to Lateral Strain History)

  • 조순호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.201-204
    • /
    • 2008
  • FRP 합성재료로 구속된 콘크리트의 응력-변형률 응답을 합리적으로 예측할 수 있는 해석모델이 제시되었다. 제안된 모델은 하중이 증가함에 따라 점진적으로 발생하는 미세균열에 의한 부피팽창이 미세재료구조의 손상을 나타내는 중요한 척도이며, 이에 손상정도에 따라 하중지지능력을 일관되게 산정할 수 있다는 기본개념에 근거한다. 이를 위하여 제안모델은 면적변형률 및 공극의 함수로 표시된 탄성계수, 팽창콘크리트와 구속매체의 상호작용을 나타내는 에너지 평형식, 변화하는 구속력 및 점증계산논리를 포함한다. 따라서 실험으로부터 유도된 팽창비 관계식으로부터 횡방향 혹은 부피팽창변형률을 산정하는 기존의 해석모델과는 달리 역학적 거동 및 에너지 평형식으로부터 연속적으로 변화하는 횡방향 변형률을 산정한다.

  • PDF