• Title/Summary/Keyword: cone penetration tests

Search Result 147, Processing Time 0.021 seconds

Effect of PBD to improve soft marine sedimentary ground

  • Jeong, Jin-Seob;Hwang, Woong-Ki;Jeong, Choong-Gi;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • The effect of plastic board drains (PBDs)on ground improvement was checked out considering three crucial factors: ground settlement, undrained shear strength, and residual water head. First, the settlement analysis including initial settlement induced by reclamation of sand mat was conducted by back calculation analysis with measured data. Its result showed toot the PBDs used for this site worked well on improving soft ground. Secondly, the undrained shear strength was investigated by laboratory and in-situ tests including unconsolidated-undrained triaxial compression (UU) tests, unconfined compression tests, in-situ vane tests, and cone penetration tests. From the test results, they showed that the undrained shear strength of the improved ground by PBDs was significantly increased as well as the strength increasing ratio especially $10{\sim}15m$ below the ground surface on site. Thirdly, the residual water head measurement from the in situ dissipation test was found the same as the static water head, which indicated primary consolidation was completed and the effect of soil improvement with PBDs can be confirmed.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Development of Portable Multi-function Sensor (Mini CPT Cone + VWC Sensor) to Improve the Efficiency of Slope Inspection (비탈면 점검 효율화를 위한 휴대형 복합센서 개발)

  • Kim, Jong-Woo;Jho, Youn-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • In order to efficiently analysis the stability of a slope, measuring the shear strength of soil is needed. The Standard Penetration Test (SPT) is not appropriate for a slope inspection due to cost and weights. One of the ways to effectively measure the N-value is the Dynamic Cone Penetration Test (DCPT). This study was performed to develop a minimized multi-function sensors that can easily estimate CPT values and Volumetric Water Content. N value with multi-fuction sensor DCPT showed -2.5 ~ +3.9% error compared with the SPT N value (reference value) in the field tests. Also, the developed multi-fuction sensor system was tested the correlation between the CPT test and the portable tester with indoor test. The test result showed 0.85 R2 value in soil, 0.83 in weathered soil, and 0.98 in mixed soil. As a result of the field test, the multi-function sensor shows the excellent field applicability of the proposed sensor system. After further research, it is expected that the portable multi-function sensor will be useful for general slope inspection.

Laboratory Tests for the Applicability of Various Testing Devices for Measuring Degree of Compaction (여러가지 다짐 평가장비의 적용성을 위한 실내시험)

  • Yoo, Wan-Kyu;Lim, Nam-Gyu;Kim, Byoung-Il;Kim, Ju-Hyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1178-1187
    • /
    • 2008
  • Quality assurance for embankment compaction is one of very important procedures to guarantee high quality construction. However, only sand replacement method (KS F2312) and static plate load test (KS F2310) which are conventional and tiresome methods are used to evaluate degree of compaction at construction fields. Recently, new types of devices such as the geogauge and the light falling weight deflectometer (LFWD), the soil impact hammer (CASPFOL) and dynamic cone penetration test etc. which are able to substitute for the conventional methods are begun to use to evaluate soil stiffness. In this study, a laboratory model test was performed to evaluate correlations among test results obtained from the new devices and to assess the potential use of them. All test results have correlations with relative density and water content. Especially, the coefficients of correlation between $E_G$ from the geogauge and $K_{30'}$ from the soil impact hammer and between $E_G$ from the geogauge and $E_{LFWD}$ from LFWD are more than 0.7 but those between the results from DCP and others are less than those between $E_{G{\cdot}}$ and $K_{30'}$ and $E_G$ and $E_{LFWD}$.

  • PDF

Predictions of PC Pile Shaft Resistance by CPT Data (콘관입시험자료를 기초로 한 PC말뚝의 주면마찰력 예측)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Three prestressed concrete(PC) piles were installed for research purpose at Seosan area of west sea of Korea, and also cone penetration tests (CPT) were performed near two pile locations in order to compute PC pile shaft resistance by using CPT data measured. Three common CPT prediction methods that ia, Schmertmann method, Tumay Sl Fakroo method and LCPC method in France were used to predict pile shaft resistance. The pile shaft resistance predicted by each method was compared with that obtained by full-scale loading test and pile driving analyzer to estimate reliability of each prediction method. The predicted resistances based on three CPT-based methods underestimated significantly the resistances obtained from by fullrcale loading test, performed at 25 days and 42 days text pile installtion. There were, however, good agreements of predicted shaft resistance of piles between three CPT-based methods and pile driving analyzer tested two weeks after pile installtion.

  • PDF

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.