• Title/Summary/Keyword: conductivity measurement

Search Result 627, Processing Time 0.027 seconds

The Role of Lattice Oxygen in the Selective Catalytic Reduction of NOx on V2O5/TiO2 Catalysts (V2O5/TiO2 촉매의 선택적 환원촉매반응에서 격자산소의 역할)

  • Ha, Heon-Phil;Choi, Hee-Lack
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.323-328
    • /
    • 2006
  • In situ electrical conductivity measurements on $V_2O_5WO_3/TiO_2$ catalysts were carried out at between 100 and $300^{\circ}C$ under pure oxygen, NO and $NH_3$ to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) de NOX. The electrical conductivity of catalysts changed irregularly with supply of NO. It was, however, found that the electrical conductivity change with ammonia supply was regular and the increase of electrical conductivity was mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts showed close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also showed that labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that de NOx reaction occurs through the Eley?Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. This suggests that measurement of the change can be used as a measure of the de NOx performance.

Establishment of CTD Calibration System and Uncertainty Estimation (CTD 교정 시스템 구축 및 불확도 평가)

  • Lee, Jung-Han;Hwang, Keun-Choon;Kim, Eun-Soo;Lee, Seung-Hun
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • The quality control of ocean observations data is becoming a major issue as real-time observational data and information services have increased recently. Therefore, it is necessary for oceanographic instruments to calibrate. In this paper, we first introduce the CTD calibration system and traceability. Next, CTD calibration procedures and estimation of uncertainty of measurement are described. The expanded uncertainty (k = 2) of the temperature, pressure and conductivity are 0.$0.003^{\circ}C$, $6.0{\times}10^{-5}$ and 0.006 mS/cm respectively. Finally, the excellence of CTD calibration and its measurement capability has been proven by comparing the inter-calibration result of KIOST and Sea-Bird Electronics (SBE). CTD calibration residuals are less than ${\pm}0.0001^{\circ}C$, ${\pm}0.001$ MPa, ${\pm}0.0001$ S/m for SBE 3plus temperature sensor, SBE 19plus pressure sensor and SBE 4C conductivity sensor respectively.

Reliability Evaluation of Miniaturized Measurement Cell of Effective Thermal Conductivity for Hydrogen Storage Materials (소형 수소저장물질 유효열전도도 측정장치의 신뢰성 평가)

  • LEE, YOUNG HYO;IM, YEON HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.431-437
    • /
    • 2015
  • Recently, a miniaturized measurement cell of effective thermal conductivity was developed to evaulate the heat transfer characteristics of hydrogen stroage material in the initial step of its development. In this work, the realiablity issues which can occur from this miniaturization of measurement cell were studied in detail by both experiments and numerical simulation of heat transfer. $LaNi_5$ as a reference was used for the reliability evaluation of the miniaturized measurement cell. Numerical simulations of heat transfer for this measurement system were verified through comparison with the experimental data. Under these reliablity studies, we discuss how to overcome the inherent drawbacks of this miniaturized system in order to achieve the high reliability.

A NOTE ON UNIQUENESS AND STABILITY FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

  • Kang, Hyeon-Bae;Seo, Jin-Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.781-791
    • /
    • 2001
  • We consider the inverse conductivity problem to identify the unknown conductivity $textsc{k}$ as well as the domain D. We show hat, unlike the case when $textsc{k}$ is known, even a two or three dimensional ball may not be identified uniquely if the conductivity constant $textsc{k}$ is not known. We find a necessary and sufficient condition on the Cauchy data (u│∂Ω, g) for the uniqueness in identification of $textsc{k}$ and D. We also discuss on failure of stability.

  • PDF

An Experimental Study on Thermal Conductivity Change of Water-Al2O3 Nanofluid with the Elapse of Time, Stirring, and Adding Dispersing Agent (시간경과, 교반 및 분산제 첨가에 따른 물-Al2O3 나노유체 열전도도 변화에 관한 실험적 연구)

  • Park, Dong-Uk;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.537-543
    • /
    • 2013
  • A water-$Al_2O_3$ nanofluid was manufactured, and its thermal conductivity was measured in this study. The measurement was performed at volumetric concentrations of 0.5%, 1%, 2%, and 3%, and the nanoparticle sizes were 20 nm and 70 nm. Experimental test equipment, using the transient hot wire method, was installed to measure the thermal conductivity of the nanofluid, and the measured results were confirmed by measuring pure water with a measurement error of 0.92% at $20^{\circ}C$. The thermal conductivity enhancement ranged from 4.8% to 13.6% for the 20 nm particle size, and from 3.1% to 8.8% for the 70 nm particle size at a concentration range of 0.5% to 3%. The enhancement increased with a decrease in particle size and an increase in concentration. With the elapse of time after manufacturing the nanofluid, the thermal conductivity enhancement decreased significantly from 5 to 9 h, and this trend was measured under all of the measurement conditions. After 24 h, the enhancement ranged from 1.2% to 3.5% for the 20 nm particles, and from 0.6% to 2.3% for the 70 nm particles. The enhancement trends with the elapse of time were almost identical with and without stirring the nanofluid. SDBS (Sodium Dodecyl Benzene Sulfonate) was added as a dispersing agent, and the decrease in the thermal conductivity enhancement was delayed.

Applicability of Electrical Conductivity Monitoring Technique for Soil-bentonite Barrier (흙-벤토나이트월에 대한 전기전도도 모니터링 기법의 적용성 평가)

  • Oh, Myoung-Hak;Yoo, Dong-Ju;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.47-55
    • /
    • 2007
  • In this study, applicability of electrical conductivity monitoring technique for containment barrier such as soil-bentonite wall was evaluated. Laboratory tests including permeability tests and column tests were performed to understand variations in electrical conductivity at different bentonite contents, hydraulic conductivities, and heavy metal concentrations. The electrical conductivity of compacted soil-bentonite mixtures was found to increase proportionally with bentonite content. Accordingly, the hydraulic conductivity of compacted soil-bentonite mixtures which decreases linearly with increasing bentonite content was found to have an inversely proportional relationship with the electrical conductivity. In column tests, electrical conductivity breakthrough curves and concentration breakthrough curves were simultaneously obtained. These results indicated that electrical conductivity measurement can be an effective means of detecting heavy metal transport at the desired locations within barriers and verifying possible contaminant leakage. Experimental results obtained from this study showed that the electrical conductivity measurement can be a promising tool for monitoring of containment barrier.

Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids (알루미나/산화아연/이산화티타늄 나노유체의 열전도율 측정)

  • Kim Sang Hyun;Choi Sun Rock;Hong Jonggan;Kim Dongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1065-1073
    • /
    • 2005
  • The thermal conductivity of water- and ethylene glycol-based nanofluids containing alumina $(Al_2O_3)$, zinc oxide (ZnO) and titanium dioxide $(TiO_2)$ nanoparticles is measured by varying the particle diameter and volume fraction. The transient hot-wire method using an anodized tantalum wire for electrical insulation is employed for the measurement. The experimental results show that nanofluids have substantially higher thermal conductivities than those of the base fluid and the ratio of thermal conductivity enhancement increases linearly with the volume fraction. It has been found that the ratio of thermal conductivity enhancement increases with decreasing particle size but no empirical or theoretical correlation can explain the particle-size dependence of the thermal conductivity. This work provides, for the first time to our knowledge, a set of consistent experimental data over a wide range of nanofluid conditions and can therefore serve as a basis for developing theoretical models to predict thermal conduction phenomena in nanofluids.

Stabilization and thermal conductivity measurement of MWCNT nanofluids by using the $3-{\omega}$ method (3-${\omega}$ 방법을 이용한 다중벽 탄소나노튜브 나노유체의 침전 안정성 및 열전도계수 측정에 관한 실험적 연구)

  • Oh, Dong-Wook;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2171-2176
    • /
    • 2007
  • The 3-omega (3-${\omega}$) method is utilized to measure the thermal conductivity of nanofluids. A metal line heater on a silicon nitride membrane bridge structure is microfabricated by a bulk silicon etching method. Localized measurement of the thermal conductivity within the nanofluids droplet is possible by the fabricated 3-${\omega}$ sensor. Time varying AC temperature amplitudes and thermal conductivities are measured to check the stability of the nanofluids containing multi-wall carbon nanotubes (MWCNTs). Stabilities of MWCNT nanofluids prepared with different chemical treatments are compared. Acid treated MWCNT showed best dispersion stability in water while MWCNTs dispersed in water with surfactants such as Gum Arabic and Sodium dodecyl benzene sulfate showed clear sign of gravity dependence.

  • PDF

Electrical Properties of ZnO-SnO$_2$ Composites (ZnO-SnO$_2$복합체의 전기적성질)

  • 김태원;전장배;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.303-305
    • /
    • 1996
  • The electrical Properties of ZnO added TiO$_2$were investigated by using the complex impedance measurement and voltage-current source and measurement unit. The electrical conductivity of ZnO added TiO$_2$decrease with increasing the content of ZnO. The frequency-dependent Ac conductivity increase as frequency increase. Also, the trend of capacitances is similar to the AC conductivity. The semicircles of impedance spectrum increase with increasing ZnO contents. The decrease of electrical conductivity seems to be the effect of ZnO acceptor adding.

  • PDF