• Title/Summary/Keyword: conductivity/resistivity

검색결과 390건 처리시간 0.029초

질화알루미늄의 소결(I) : 상압소결 (Sintering of Aluminum Nitride (I) : Pressureless Sintering)

  • 최상욱;이희철;이전;이임창
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.457-464
    • /
    • 1991
  • Aluminum nitride (AlN) has excellent properties such as high thermal conductivity and electrical resistivity, whereas it has some disadvantages such as low sinterability and tendency to be hydrolyzed by moisture at room temperature. In the present work, the relative density, modulus of rupture and microhardness were examined for pressure-less-sintered AlN (synthetic and commercial) bodies which were prepared under the conditions of various sintering temperatures, holding times and additions of CaCO3 which showed the best effect on sinterability among the various sintering aids. As a result, the AlN bodies with 1.0 wt% CaCO3 (0.56wt% CaO) which were sintered at 1800$^{\circ}C$ for 20 min showed good densification. In this case, the relative densities were 95.9% and 95.2%, and microhardnesses were 10.3 GPa and 9.8 GPa for synthetic and commercial AlN respectively. And as the holding time at 1800$^{\circ}C$ was increased from 10 min to 60 min, the relative density was increased from 91.9% to 96.5%. It was considered that impurities of metals and oxygen promoted the densification of AlN at low temperature (1600$^{\circ}C$).

  • PDF

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

MECHANICAL AND ELECTRICAL PROPERTIES OF STYRENE-BUTADIENE-STYRENE/ ALUMINIUM COMPOSITES

  • Renukappa, N.M.;Siddaramaiah, Siddaramaiah;Sudhaker Samuel, R.D.;Jeevananda, T.;Kim, Nam-Hoon;Lee, Joong-Hee
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.142-147
    • /
    • 2007
  • A series of styrene-butadiene-styrene/aluminium (SBR/Al) composites have been compounded with different weight ratios of Al. The prepared SBR-Al systems have been characterized for different mechanical properties such as tensile strength, tensile modulus and surface hardness have improved with the increase in content of Al in SBR matrix. This may is because of the increase in polymer-filler interaction. The electrical properties such as volume conductivity, surface resistivity, dielectric constant, dissipation factor (tan delta), and break down voltage of SBR/Al composites have been measured with reference to volume fraction $(V_{f}),$ frequency and temperature. The resistance of the SBR-Al composites is found to be ohmic. The voltage-current (V-I) characteristics for SBR-Al also exhibit a linear relationship indicating the ohmic behavior.

  • PDF

P형 전기전도도 특성을 갖는 $Selenized CuInse_2$ 박막의 제조 (Preparation of Seleinzed CuInSeS12T Thin Films P-type Conductivity)

  • 박성;김선재
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.296-302
    • /
    • 1994
  • Polycrystalline CuInSeS12T thin were prepared by depositing Cu/In layer, which was sequentially sputtered varying the Cu/(Cu+In) mole ratio, on glass substrate and selenizing with selenium metal vapor in a nitrogen atmosphere. Compositional and structural, characterization was carried out by X-ray diffraction (XRD), wavelength-dispersive spectroscopy(WDS), and scanning electron microscope(SEM). Electrical characterization was carried out by the measurements of Hall effect, electrical resistivity. Large indium loss occurs in early stage of the selenization process. The selenized films which had mole ratios larger than 0.28 have chalcopyrite CuInSeS12T phase and these that had less mole ratios have sphalerite phase. The selenized films containing CuS1xTSe phase have Cu-rich CuInSeS12T phase and these that did not contain CuS1xTSe have In-rich CuInSeS12T phase. By optimizing the sputtering conditions,it is possible to fabricate CuInSeS12T thin films which have little secondary phases and an appropriate hole concentration (10S015T ~ 10S016TcmS0-3T) for solar cells.

비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films)

  • 이준신;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

층상구조형 Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ 상의 합성 및 특성연구 (Synthesis and Characterization of Layered Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ Phases)

  • 송민석;서상일;이재열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 1998
  • Metallic ferromagnet LA$_{1-x}$ Sr$_{x}$MnO$_3$ has received considerable attentions because of its metallic conductivity and giant magnetic resistivity. It is generally believed that layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase is insulating and shows no metallic transition. But recent report revealed that some single crystal SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase showed MR effect. In this study, layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_2$ Phases were synthesized by solid state reaction at 140$0^{\circ}C$ in air atmosphere, for wide range of x and their phases were confirmed by X-ray diffraction. Electrical and magnetic properties were measured down to 10K and the possibility of MR effects was investigated.as investigated.

  • PDF

고온초전도 선재를 이용한 전류도입선의 열분포 해석 (Analysis of Temperature distribution in a BSCCO-2223 tape stacked current lead)

  • 최세용;나완수;주진호;유재무;김계수
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.275-279
    • /
    • 1999
  • It is well known that HTS current lead minimizes helium vaporizations much less than the conventional current lead. To estimate the helium vaporizations in the design step, we need to compute the exact the temperature distributions on the lead. Unfortunately, the thermal parameters such as thermal conductivity and electrical resistivity depend strongly on the temperature. That is, heat equation itself has a nonlinear characteristics in the current lead. Furthermore, the uncertainties of helium vaporizations make it more difficult to estimate the boundary values. So far, numerical analyses using constant parameters in finite intervals have been used. In this paper, we calculate the temperature distribution in the current lead in considerations of temperature dependent parameters. The results showed self consistencies.

  • PDF

전기저항 콘 프로브를 이용한 해안지반의 간극률 산정 (Porosity estimation using electrical resistance Cone Probe in offshore soils)

  • 이종섭;김준한;윤형구;조태현;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.127-133
    • /
    • 2008
  • The electrical resistivity methods have been commonly used for figuring out the ground layers. The purpose of this paper, differently from previous methods, is not only to figure out the layers but also to develope a equipment and a method to analyze ground porosity. Equipment has a shape of cone, which can be coupled with drilling rods. A field penetration test was performed to test application in Incheon Chungla area. Through the field test soil resistances were measured. To calculate soil porosity along the depth, Archie's law is applied. The results show that a new equipment and porosity analysis method using Archie's law can distinguish soil layers and precisely measure soil porosity.

  • PDF

Scaling law in MHD turbulence small-scale dynamo

  • Park, Kiwan;Ryu, Dongsu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.74.2-74.2
    • /
    • 2014
  • Magnetohydrodynamics(MHD) dynamo depends on many factors such as viscosity ${\gamma}$, magnetic diffusivity ${\eta}$, magnetic Reynolds number $Re_M$, external driving source, or magnetic Prandtl number $Pr_M$. $Pr_M$, the ratio of ${\gamma}$ to ${\eta}$ (for example, galaxy ${\sim}10^{14}$), plays an important role in small scale dynamo. With the high PrM, conductivity effect becomes very important in small scale regime between the viscous scale ($k_{\gamma}{\sim}Re^{3/4}k_fk_f$:forcing scale) and resistivity scale ($k_{\eta}{\sim}PrM^{1/2}k_{\gamma}$). Since ${\eta}$ is very small, the balance of local energy transport due to the advection term and nonlocal energy transfer decides the magnetic energy spectra. Beyond the viscous scale, the stretched magnetic field (magnetic tension in Lorentz force) transfers the magnetic energy, which is originally from the kinetic energy, back to the kinetic eddies leading to the extension of the viscous scale. This repeated process eventually decides the energy spectrum of the coupled momentum and magnetic induction equation. However, the evolving profile does not follow Kolmogorov's -3/5 law. The spectra of EV (${\sim}k^{-4}$) and EM (${\sim}k^0$ or $k^{-1}$) in high $Pr_M$ have been reported, but our recent simulation results show a little different scaling law ($E_V{\sim}k^{-3}-k^{-4}$, $EM{\sim}k^{-1/2}-k^{-1}$). We show the results and explain the reason.

  • PDF