• Title/Summary/Keyword: conductive polymer composite

Search Result 114, Processing Time 0.028 seconds

Electromechanical Behaviors and Application of Carbon Nanotube Composite Actuators Consisting of Bundles and Mats (다발/매트로 구성된 탄소나노튜브 복합재 엑츄에이터의 거동특성 및 응용연구)

  • Kim, Cheol;Liu, Xinyun
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.34-39
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting of single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. This relationship can give us a direct understanding of the actuation of a nanoactuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. Optimizations of SWNTs-CPs composite actuator may be achieved by using well-aligned nanotubes as well as choosing suitable electrolyte and input voltage range.

A Study on the Dielectric Properties of SBS/Conductive Filler/Dielectrics Composites for Phantom Model (팬텀 모델 제작을 위한 SBS/도전체/유전체 3상 복합재료의 유전특성 연구)

  • Kim, Yoon-Jin;Choi, Hyung-Do;Cho, Kwang-Yun;Yoo, Don-Sik;Yoon, Ho-Gyu;Suh, Kwang-Seok
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.98-107
    • /
    • 2001
  • Dielectric properties and shape memory characteristics of SBS composites filled with carbon black as conductive filler and (Ba,Ca)$(Sn,Ti)O_3$ or $SrTiO_3$ as dielectrics were investigated for the development of phantom model. SBS/carbon black composite showed an increment of complex dielectric constant with increasing the content of carbon black and the frequency dependence that the dielectric constant decreases with the frequency. The complex dielectric constant and the conductivity of SBS/carbon black/dielectrics composites increased with the increase of dielectrics and the characteristics of the frequency dependence also occurred by the effect of carbon black. Phantom materials with the dielectric properties and the conductivity corresponding to human tissues for the measurement of specific absorption rate(SAR) within the frequency range of current mobile phones(775MHz~2GHz) could be developed by adjusting the composition ratios of carbon black, dielectrics and SBS and by controlling the characteristic of frequency dependence of composite. From thermomechanical cycling test good shape recoverability could be obtained in SBS composite even though the residual strain was increased by the effect of filler.

  • PDF

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

Development of BGA Interconnection Process Using Solderable Anisotropic Conductive Adhesives (Solderable 이방성 도전성 접착제를 이용한 BGA 접합공정 개발)

  • Yim, Byung-Seung;Lee, Jeong Il;Oh, Seung Hoon;Chae, Jong-Yi;Hwang, Min Sub;Kim, Jong-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper, novel ball grid array (BGA) interconnection process using solderable anisotropic conductive adhesives (SACAs) with low-melting-point alloy (LMPA) fillers have been developed to enhance the processability in the conventional capillary underfill technique and to overcome the limitations in the no-flow underfill technique. To confirm the feasibility of the proposed technique, BGA interconnection test was performed using two types of SACA with different LMPA concentration (0 and 4 vol%). After the interconnection process, the interconnection characteristics such as morphology of conduction path and electrical properties of BGA assemblies were inspected and compared. The results indicated that BGA assemblies using SACA without LMPA fillers showed weak conduction path formation such as solder bump loss or short circuit formation because of the expansion of air bubbles within the interconnection area due to the relatively high reflow peak temperature. Meanwhile, assemblies using SACA with 4 vol% LMPAs showed stable metallurgical interconnection formation and electrical resistance due to the favorable selective wetting behavior of molten LMPAs for the solder bump and Cu metallization.

The Electrical Characteristics of the Antistatic Wafer Carrier (대전 방지용 웨이퍼 캐리어의 전기적 특성)

  • Chea, Jong-Yun;Yoon, Jong-Kuk;Kang, Ok-Gu;Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.319-324
    • /
    • 2014
  • The wafer carrier is made of PP, PC, PE resin which have excellent heat and chemical resistance and electrical properties. However, particle generation has become a problem due to static electricity generated in the carrier. Some conductive material such as carbon black (CB) and carbon fiber (CF) are added for the purpose of anti-static, however, additional for motility and particle contamination problems due to high carbon content occurs. In this paper, the electrical characteristics and workability are observed and compared by adding low Carbon Nono Tube(CNT) to each PP, PC and PE resin to solve the problem.

Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC (PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향)

  • Lee, Jaeyoung;Lee, Wookum;Rim, Hyungryul;Joung, Gyubum;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

Investigation of Transparent Electrodes for Solution-Processed Organic Solar Cells (용액법 기반의 유기태양전지 제작을 위한 투명전극 개발)

  • Lee, Sumin;Kang, Moon Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.115-120
    • /
    • 2021
  • In this study, composite transparent electrodes were fabricated either from a conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or silver nanowire (AgNW). Three transparent electrodes such as PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW were fabricated. As for a transparent electrode, measured sheet resistance values were 89.6, 60.6 and 28.6 Ω/sq, and the transmittance values were 80.2, 82.0 and 83.8% while surface roughness (Rq) values were 4.1, 8.1, 20.4 nm for PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW, respectively. To verify the overall performance of these composite electrodes, we applied these electrodes to the top electrode of the solution-processed organic solar cells (OSCs). PEDOT:PSS provided the best performance with a fill factor (FF) of 51.2% and a photoconversion efficiency (PCE) of 2.2%, while traditional metal top electrode OSC provided FF of 60.5% and PCE of 3.1%.

Crosslinked Composite Polymer Electrolyte Membranes Based On Diblock Copolymer and Phosphotungstic Acid (디블록 공중합체와 인텅스텐산을 이용한 가교형 복합 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Park, Jung-Tae;Seo, Jin-Ah;Kim, Jong-Hwa;Jho, Young-Choong
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • Proton conductive hybrid nanocomposite polymer electrolyte membranes comprising polystyrene-5-poly (hydroxyethyl methacrylate) (PS-b-PHEMA), sulfosuccinic acid (SA) and phosphotungstic acid (PWA) were prepared by varying PWA concentrations. The PHEMA block was thermally crosslinked by SA via the esterification reaction between -OH of PHEMA and -COOH of SA. Upon the incorporation of PWA into the diblock copolymer, the symmetric stretching bands of the $SO_3^-$ group at $1187cm^{-1}$ shifted to a lower wavenumber at $1158cm^{-1}$, demonstrating that the PWA particles strongly interact with the sulfonic acid groups of SA. When the concentration of PWA was increased to 30wt%, the proton conductivity of the composite membrane at room temperature increased from 0.045 to 0.062 S/cm, presumably due to the intrinsic conductivity of the PWA particles and the enhanced acidity of the sulfonic acid in the membranes. The membrane containing 30wt% of PWA exhibited a proton conductivity of 0.126 S/cm at $100^{\circ}C$. Thermal stability of the composite membranes was also enhanced by introducing PWA nanoparticles.

Preparation of PEDOT-TiO2 Composite Thin Film by Using Simultaneous Vapor Phase Polymerization (동시-기상중합법을 이용한 Poly(3,4-ethylenedioxythiophene)(PEDOT)-TiO2 하이브리드 박막 제조)

  • Ko, Young Soo;Han, Yong-Hyeon;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.525-529
    • /
    • 2014
  • PEDOT-$TiO_2$ hybrid conductive thin film including semiconductive metal oxide was successfully prepared via simultaneous vapor phase polymerization (VPP). The mechanical properties such as pencil hardness and anti-scratch property as well as optoelectrical properties of PEDOT-$TiO_2$ hybrid thin film could be improved as compared with pristine PEDOT thin film. Physicochemically stable crosslinked $TiO_2$ layer derived from a sol-gel process by FTS was generated in the PEDOT thin film layer by simultaneous VPP, resulting in improving mechanical properties of the hybrid thin films without any deterioration of their original optoelectrical properties. PEDOT-$TiO_2$ hybrid thin film showed better electrical conductivity as compared with PEDOT film. It might be due to the fact that the surface morphology of hybrid thin film prepared by simultaneous VPP showed smoother than that of pristine PEDOT thin film.