• Title/Summary/Keyword: conductive fiber

Search Result 161, Processing Time 0.032 seconds

Effect of fiber geometry on the electromagnetic shielding performance of mortar

  • Kim, Young Jun;Yemam, Dinberu M.;Kim, Baek-Joong;Yi, Chongku
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The increased awareness of electromagnetic wave hazards has prompted studies on electromagnetic shielding using conductive materials in the construction industry. Previous studies have explored the effects of the types of conductive materials and their mix proportions on the electromagnetic shielding performance; however, there has been insufficient research on the effect of the geometry of the conductive materials on the electromagnetic shielding performance. Therefore, in this study, the dependence of the electromagnetic shielding performance on the cross-sectional geometry, diameter and length of fibers was investigated. The results showed that the electromagnetic shielding performance improved when the fiber length increased or the diameter decreased, but the effect of the cross-sectional geometry of the fibers was smaller than the effect of the fiber spacing factor.

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

An Experimental Study on the Exothermic Properties of Cement Mortar Containing Conductive Materials (전도성 재료를 혼입한 모르타르의 발열특성에 관한 실험적 연구)

  • Song, Dong-Geun;Hong, Chul-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.131-132
    • /
    • 2014
  • In this study, an experiment was carried out using graphite, conductive nickel powder, copper bar, carbon fiber for evaluate the exothermic properties and heating reproducibility of the cement mortar containing conductive material. As a result, the conductive materials that interfere with heating reproducibility are present, and the optimal conductive materials exist in each input voltage.

  • PDF

Electromagnetic Interference Shielding Effectiveness of Hybrid Conductive Fabrics (하이브리드 전도성 직조섬유의 전자파 차폐효과)

  • Han, Gil-Young;Kim, Ki-Yeol;Yun, Tae-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • This study investigated electromagnetic interference (EMI) shielding effectiveness (SE) of hybrid conductive fabrics. The coaxial transmission line method was used to measure the EMI Shielding effectiveness of the conductive fabrics. We designed and constructed a measuring system, consisting of a network analyzer and a device that serves as a sample holder and at the same time as a transmission medium of incident electromagnetic waves. The measurements of SE were carried out in a frequency range from 100 MHz to 2 GHz. The results of the EMI shielding experiments showed that the maximum electromagnetic shielding effectiveness (EMSE) values of sandwich type C/A/C (carbon fiber sheet/aluminum foil tape/carbon fiber sheet) and C/Ni/C (carbon fiber sheet/magnetic shielding foil/carbon fiber sheet) samples were 55 dB and 113 dB, respectively, at a frequency of 1.9 GHz.

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Comparative Anatomy of Diffuse-Porous Woods Grown in Korea (I) -Characteristics by Simple Correlation and Principal Component Analysis- (한국산(韓國産) 산공재(散孔材)의 해부학적(解剖學的) 특성(特性)에 관한 비교연구(比較硏究)(I) -단순상관(單純相關)과 주성분(主成分) 분석(分析)에 의한 특성(特性)-)

  • Chung, Youn-Jib;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.46-53
    • /
    • 1995
  • The anatomy of Korean diffuse-porous woods, 36 families, 75 genera, 145 species, 215 specimens was described and analyzed. Sixteen wood anatomical characters, habit and phenology factors were determined by simple correlation and principal component analysis. Strong positive correlations were found between vessel element length and fiber length, ray width and ray height, simple pits of fiber wall and paratracheal parenchyma distribution. The results of principal component analysis (PCA) disclose the primitive characteristics and the direction of xylem evolution of Korean diffuse-porous woods. The xylem evolution scenario for Korean dicotyledonous woods is considered to be developed in the direction of decreasing trends of vessel frequency, vessel element length, and length/diameter(L/D) ratio of vessel element but increasing trends of vessel diameter, fiber length/vessel element length(F/V) ratio, libriform wood fibers, simple perforation, and homogeneous ray composition. Increase of vessel diameter and decrease of vessel frequency seem to be related to the improvement of conductive efficiency, and increase of the vessel element length and occurrence of scalariform perforation in vessel element may be related to enhanced of conductive safety. Also the libriform wood fibers and ray features appear to have relationship with mechanical support and nutrient metabolism, respectively.

  • PDF

Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler (스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과)

  • Han, Gil-Young;Song, Dong-Han;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Fabrication of active cooling e-Textiles (스마트 의류용 전도성 직물의 제조 및 특성 분석)

  • Lee, Seung-A;Lee, Chang-Hwan;Kim, Ki-Tai;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2008
  • Cooling function is definitely one of the most desirable attribute of clothing. In spite of the recent progress on phase changing material(PCM) research, the final products with sufficient amount of cooling capability have not yet to be developed in market. A new concept of cooling fabrics has been proposed by applying "Peltier effect" to textile materials. It occurs whenever electrical current flows through two dissimilar conductors; depending on the direction of current flow, the junction of the two conductors is absorbed or released heat. This effect has been tested on P-type and N-type conducting polymers. A P-type conductive polypyrrole coated fabric was synthesized by in-situ polymerization on plain weave PET to make conductive fabrics. And an N-type electrically conductive material was synthesized by treatment of MWNT and polyethyleneimine(PEI). A noticeable amount of temperature difference has been found on the fabrics.

Fabrication of Highly Conductive Yarn using Electroless Nickel Plating (무전해 니켈 도금법을 이용한 고성능 도전사의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.