• Title/Summary/Keyword: conductive carbon

Search Result 454, Processing Time 0.03 seconds

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon;Min, Byung Ghyl;Lee, Sang Cheol;Park, Sung Bum;Lee, Tae Dong;Park, Min;Kumar, Satish
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.198-203
    • /
    • 2004
  • Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

Application of Composites Composed of Phosphoric Acid-Doped Silica Gel and Styrene-Ethylene-Butylene-Styrene Elastomer to Electric Double-Layer Capacitors

  • Matsuda, Atsunori;Honjo, Hiroshi;Hirata, Kazuki;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.353-356
    • /
    • 1999
  • Highly proten-conductive elastic composites have been successfully prepared from $H_3PO_4$-doped silica gel and styrene-ethylene-butylene-styrene block elastic copolymer. In addition solid state electric double-layer capacitors have been fabricated using the composite as an electrolyte and activated carbon powders(ACP) hybridized with the composite as a polrizable electrode. The cyclic voltammogram of the electric double-layer capacitor fabricated demonstrated that electric charge was stored in the elecric double-layer at the interface between the polarizable electrode and the electrolyte. The value of capacitance of the capacitor was 10 F/(gram of total ACP), which was comparable to that of the capacitors using conventional liquid electrolytes.

  • PDF

Fabrication of CMC+PTFE Electrode and it's Electrochemical Performances (CMC+PTFE 혼합바인더 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1248-1253
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability between $2.5mA/cm^2{\sim}100mA/cm^2$ current density. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE : 60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, it was also noted that the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved the binding force.

  • PDF

Analysis of Signal Characteristics of Resistance Scanning-type Flexible Tactile Sensor (저항 스캐닝 방식의 유연 촉각센서 신호 특성분석)

  • Sin, Yu-Yeong;Kim, Seul-Ki;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.28-35
    • /
    • 2015
  • This paper introduces a resistance scanning-type flexible tactile sensor for intelligent robots and presents the output characteristics of the sensor via signal processing. The sensor was produced via the lamination method using multi-walled carbon nanotubes (a conductive material), an insulator, and Tango-plus (an elastic material). Analog and digital signal processing boards were produced to analyze the output signal of the sensor. The analog signal processing board was made up of an integrator and an amplifier for signal stability, and the digital signal processing board was made up of an IIR filter for noise removal. Finally, the sensor output for the contact force was confirmed through experiments.

Synthesis of Highly Dispersed and Conductive Graphene Sheets by Exfoliation of Preheated Graphite in a Sealed Bath and its Applications to Polyimide Nanocomposites

  • Hossain, Muhammad Mohsin;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2049-2056
    • /
    • 2014
  • A simple method for exfoliating pristine graphite to yield mono-, bi-, and multi-layers of graphene sheets as a highly concentrated (5.25 mg/mL) and yielded solution in an organic solvent was developed. Pre-thermal treatment of pristine graphite at $900^{\circ}C$ in a sealed stainless steel bath under high pressures, followed by sonication in 1-methyl-2-pyrrolidinone solvent at elevated temperatures, produced a homogeneous, well-dispersed, and non-oxidized graphene solution with a low defect density. The electrical conductivities of the graphene sheets were very high, up to 848 S/cm. These graphene sheets were used to fabricate graphene-polyimide nanocomposites, which displayed a higher electrical conductivity (1.37 S/m) with an improved tensile strength (95 MPa). The synthesized graphene sheets and nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

A study on electromechanical properties of CNT conductive film deposited on flexible substrate (유연 모재 위에 증착된 CNT 전도성 필름의 전기-기계적 특성에 대한 연구)

  • Song, Sun-Ah;Kim, Jae-Hyun;Lee, Hak-Joo;Song, Jin-Woo;Chang, Won-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, electromechanical properties of carbon nanotube (CNT) thin film on flexible substrates were measured using a micro-tensile machine with functionality of simultaneous measurements of displacement, load and electrical resistance. The CNT thin film of about 100 nm thick was deposited on flexible substrates, polyethylene terephthalate (PET) using spraying and ink-jetting techniques. To investigate the effect of process condition on the electromechanical properties of CNT thin film, sets of CNT samples were fabricated under various heat treatments and microwave process. The microstructures of the CNT thin film before and after tensile test were investigated using Scanning Electron Microscope (SEM), and the failure modes of the CNT thin films were identified to understand their electromechanical behaviors and interaction with the flexible substrates. Based on the experimental results, the use of CNT thin film as flexible electrodes and strain gages is discussed.

  • PDF

Electrical Properties and Synthsis of Large Area Conductive Nano Carbon Films by Linear Ion Beam Source

  • Yeo, Gi-Ho;Sin, Ui-Cheol;Yu, Jae-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.220.1-220.1
    • /
    • 2014
  • 본 연구에서는 PECVD 공법 중에 이온화 에너지가 높은 선형이온빔 소스를 이용하여 고온에서 전도성 카본박막을 코팅하였다. 카본 박막 코팅을 위한 Precursor는 $C_2H_2$ gas를 이용하였으며, 온도에 따른 카본 박막의 전기적 특성 및 두께에 따른 카본 박막 성장 구조를 분석하였다. 카본 박막의 전기적 특성은 Interfacial contact resistance (ICR) 방법으로 측정하였으며, 접촉 저항 측정을 위한 모재는 SUS316L stainless steel을 사용하였고 카본 박막 성장 구조 분석을 위해서는 폴리싱된 Si-wafer를 사용하였다. 선형이온빔 소스를 이용하여 상온에서 증착한 카본 코팅의 접촉저항 값은 50 nm 코팅 두께에서 $660m{\Omega}cm^2@10kgf/cm^2$으로 비정질상의 특성을 나타냈으며, 고온에서는 $14.8m{\Omega}cm^2@10kgf/cm^2$으로 온도가 증가함에 따라 비정질상의 카본 박막이 전도성을 가지는 카본박막으로의 성장을 확인할 수 있었다. 또한 전도성 카본 박막의 성장 구조 분석은 FE-SEM 및 Raman spectrum 분석을 통해 확인하였으며, 그 결과 코팅 두께가 증가할수록 카본 입자들은 수nm에서 약 150 nm의 카본 cluster를 형성하며 성장하였다. 이때 전도성 카본 박막의 두께에 따른 접촉저항의 값은 고온 조건에서 카본 박막의 두께가 약 100 nm일 때, $12.1m{\Omega}cm^2@10kgf/cm^2$의 가장 낮은 값을 가졌다. 위의 결과를 경제성이 아주 우수한 대면적 전도성 나노 카본 박막의 상용화 가능성이 높아질 것으로 기대된다.

  • PDF

인가된 압력에 의한 탄소나노튜브 전극 특성 향상

  • Jeon, Ju-Hui;Choe, Ji-Hyeok;Mun, Gyeong-Ju;Gang, Yun-Hui;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • 대표적인 투명 전극 재료indium tin oxide(ITO)의 경우, 우수한 투과성과 낮은 면저항을 기반으로 차세대 디스플레이용 전극으로 각광 받고 있다. 하지만 제조 단가가 높으며 brittle 하여 유연 디스플레이에 적용이 어려우며 대면적 제조가 어렵다는 단점이 있어 이를 대체할 수 있는 새로운 물질이 필요한 실정이다. 대표적인 후보 물질로는 탄소 육각형이 서로 연결된 관 형태인 탄소나노튜브가 있으며 뛰어난 전기 전도도와 물리적 특성을 투명 전극에 적용하기 위한 연구가 활발히 진행 중이다. 본 연구에서는 탄소나노튜브 투명 전극 제조 시 잔여 분산제 제거 및 doping의 효과를 위해 수행되는 산처리 공정을 하지 않고 투명 전극의 특성을 향상 시키는 연구를 진행하였다. 제작된 박막에 압력을 인가하여 탄소나노튜브 네트워킹의 향상과 두께의 감소를 얻을 수 있었다. 실험에 사용된 탄소나노튜브는 아크 방전 공정으로 합성된 2nm의 single wall 탄소나노튜브이며 이를 분산제인 sodium dodecyl sulfate(SDS)에 분산하여 용액형태로 제작하여 사용하였다. 분산제를 제거하기 위해 탈이온수를 사용하였으며 고분자 mold를 사용하여 압력을 인가하여 그에 따른 전기적, 광학적 변화를 관찰하였다. 제조된SWCNT 박막은 four point probe measurement를 이용하여 sheet resistance를 측정하였고 UV-vis를 이용하여 투과도와 반사도 등의 광학적 특성을 측정하였다. 박막의 표면은 field emission scanning electron microscope (FESEM)과 Atomic force microscope(AFM)를 이용하여 관찰하였다.

  • PDF