• Title/Summary/Keyword: conducted EMI

Search Result 139, Processing Time 0.026 seconds

A Switching Technique for Common Mode Voltage Reduction of PWM-Inverter Induction Motor Drive System Using TMS320F240 (TMS320F240을 이용한 PWM 인버터 유도전동기 구동 시스템의 전도노이즈 저감을 위한 스위칭 기법)

  • 박규현;김이훈;원충연;김규식;최세완;함년근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2003
  • High frequency common mode voltage produced by PWM inverter fed Induction motor is a major cause of conducted EMI, creation motor ground currents, bearing currents and other harmful products. The zero switching states of inverter control invoke large in comparison with the non-zero switching state of Inverter control. We proposed a common mode voltage reduction method based on sinusoidal PWM technique. PWM signal are generated by comparing respective sinusoidal reference signal with three triangular carrier wave displaced of 120$^{\circ}$. Simulation and experimenta1 result show that common mode voltages in the proposed PWM technique are reduced by approximate 66% more than conventional FWM technique.

Characteristics of LED Signal Lamp Driving by SMPS for Large-scale Traffic Signal (SMPS 구동 대형교통 신호용 LED 신호등의 특성)

  • Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.643-648
    • /
    • 2011
  • In this study, SMPS driven LED traffic signal light for Large-scale traffic such as railroad and airport was designed and its electrical and EMI characteristics were measured. The output current of the LED module driven by SMPS was 1.67A for AC and DC input voltage over 10V. The conducted emission measured over 0.15~30MHz frequency range was lower than the allowed quasi-peak and average level, and the radiated noise measured over 30~1000MHz frequency range showed $23.96dB{\mu}V/m$ at 59.96MHz.

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.

Two Switches Balanced Buck Converter for Common-Mode Noise Reduction

  • Kanjanasopa, Warong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.493-498
    • /
    • 2004
  • The EMI noise source in a switching mode power supply is dominated by a common mode noise. If we can understand the common mode noise occurring mechanism, it is resulted to find out the method to suppress the EMI noise source in the switching mode power supply. The common mode noise is occurring mostly due to circuit is unbalanced which is caused by the capacitive coupling to frame ground, which passes through a heatsink of the switching devices. This research paper presents a new effective balancing method of buck converter circuit by mean of grounding the parasitic and compensation capacitors in correct proportion which is called that the common mode impedance balance (CMIB). The CMIB can be achieved by source, transmission line and termination balanced, such balancing, the common mode current will be cancelled out in the frame ground. The greatly reduced common mode noise can be confirmed by the experimental results.

  • PDF

Conducted EMI Reduction in Electric Propulsion Ship Using Drain Wire (전기추진함정의 전도성 EMI 저감을 위한 Drain wire의 적용 및 효과 검토)

  • Lee, Dae Han;Kim, Jae Seok;Sul, Seung Ki
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.165-166
    • /
    • 2013
  • 함정의 추진체계로 전기추진체계가 선정될 경우 대용량의 전동기 및 전력변환장치가 설치된다. 전동기를 구동하여 추진력을 얻기 위해서는 발전기에서 공급하는 AC 전력을 AC에서 DC 다시 DC에서 AC로 변환하는 과정을 거치게 된다. 이 과정에서 전력용 반도체의 On/Off 동작에 의해 높은 전압상승률 (dv/dt)이 발생하며 이로 인해 함정의 선체를 통해 흐르는 누설전류가 발생하여 인접 장비에 영향을 미치게 된다. 본 논문에서는 전기추진 함정의 전자기 간섭(EMI) 현상 발생 원인에 대해 분석하고 이를 저감시키기 위한 방법으로 Drain wire를 적용하고 그 효과에 대해 분석한다.

  • PDF

A new lossless snubber for DC-DC converters with energy transfer capability

  • Esfahani, Shabnam Nasr;Delshad, Majid;Tavakoli, Mohhamad Bagher
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.385-391
    • /
    • 2020
  • In this paper, a new passive lossless snubber circuit with energy transfer capability is proposed. The proposed lossless snubber circuit provides Zero-Current Switching (ZCS) condition for turn-on instants and Zero-Voltage Switching (ZVS) condition for turn-off instants. In addition, its diodes operate under soft switching condition. Therefore, no significant switching losses occur in the converter. Since the energy of the snubber circuit is transferred to the output, there are no significant conduction losses. The proposed snubber circuit can be applied on isolated and non-isolated converters. To verify the operation of the snubber circuit, a boost converter using the proposed snubber is implemented at 70W. Also, the measured conducted Efficiency Electromagnetic Interference (EMI) of the proposed boost converter and conventional ones are presented which show the effects of proposed snubber on EMI reduction. The experimental results confirm the presented theoretical analysis.

Equivalent Parallel Capacitance Cancellation of Common Mode Chokes Using Negative Impedance Converter for Common Mode Noise Reduction

  • Dong, Guangdong;Zhang, Fanghua
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1326-1335
    • /
    • 2019
  • Common mode (CM) chokes are a crucial part in EMI filters for mitigating the electromagnetic interference (EMI) of switched-mode power supplies (SMPS) and for meeting electromagnetic compatibility standards. However, the parasitic capacitances of a CM choke deteriorate its high frequency filtering performance, which results in increases in the design cycle and cost of EMI filters. Therefore, this paper introduces a negative capacitance generated by a negative impedance converter (NIC) to cancel the influence of equivalent parallel capacitance (EPC). In this paper, based on a CM choke equivalent circuit, the EPCs of CM choke windings are accurately calculated by measuring their impedance. The negative capacitance is designed quantitatively and the EPC cancellation mechanisms are analyzed. The impedance of the CM choke in parallel with negative capacitances is tested and compared with the original CM choke using an impedance analyzer. Moreover, a CL type CM filter is added to a fabricated NIC prototype, and the insertion loss of the prototype is measured to verify the cancellation effect. The prototype is applied to a power converter to test the CM conducted noise. Both small signal and EMI measurement results show that the proposed technique can effectively cancel the EPCs and improve the CM filter's high frequency filtering performance.

Electromagnetic Susceptibilty design of High-Speed Image Signal Processing Unit for Small Infrared Image Homing sensor (적외선 영상 호밍센서 고속 영상신호처리기의 전자기파 내성 설계)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Jeon, Hyo-won;Shin, Jung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.27-33
    • /
    • 2022
  • The small infrared image homing sensor is the eye of a guided weapon that has an infrared image sensor that identifies a target on the ground through day and night infrared image processing and searches, detects, and tracks the target. Inside the guided weapon since the power supply and communication line are used together with various components, the part against electromagnetic wave interference is very important. In particular, the effect of CE (Conducted Emission) through the power and communication lines connected by cables is very important. Through this method, it is possible to directly affect other components of the guided weapon. In this paper, the EMI filter and cable design for avoiding electromagnetic interference to the power input through the cable and the communication line are described. Also, the designed EMI filter is manufactured After the CE102 test of MIL-STD-461G, design satisfaction will be explained.

Small Loop Antenna for EMI Controlled and Monitoring

  • Khemchan, A.;Khamphakdi, P.;Urabe, Junichiro;Khan-ngern, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.470-473
    • /
    • 2004
  • This paper presents conducted emission noise measurement from electronic equipment in frequency range of 1 MHz up to 30 MHz by small loop antenna. Small loop antenna measurement method can measure common-mode (CM) and differential-mode (DM) component of the noise on a pair of power line at the same time. The CM and DM can be measured separately. The theory of this measurement method is introduced and analyzed. The measured results were compared with the conventional measurement by Line Impedance Stabilization Network (LISN) and result a good trend between those methods.

  • PDF

Transient Characteristic Study on Contact Loss of High Speed Electric Railway Using a Power Line Disturbance Simulator (전원외란 시뮬레이터를 이용한 고속전철 이선현상과도 특성 연구)

  • Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.427-431
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI(Electromagnetic Interference), dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.