• 제목/요약/키워드: conditional volatility

검색결과 109건 처리시간 0.023초

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

Dynamic Interaction between Conditional Stock Market Volatility and Macroeconomic Uncertainty of Bangladesh

  • ALI, Mostafa;CHOWDHURY, Md. Ali Arshad
    • Asian Journal of Business Environment
    • /
    • 제11권4호
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: The aim of this study is to explore the dynamic linkage between conditional stock market volatility and macroeconomic uncertainty of Bangladesh. Research design, data, and methodology: This study uses monthly data covering the time period from January 2005 to December 2018. A comprehensive set of macroeconomic variables, namely industrial production index (IP), consumer price index (CPI), broad money supply (M2), 91-day treasury bill rate (TB), treasury bond yield (GB), exchange rate (EX), inflow of foreign remittance (RT) and stock market index of DSEX are used for analysis. Symmetric and asymmetric univariate GARCH family of models and multivariate VAR model, along with block exogeneity and impulse response functions, are implemented on conditional volatility series to discover the possible interactions and causal relations between macroeconomic forces and stock return. Results: The analysis of the study exhibits time-varying volatility and volatility persistence in all the variables of interest. Moreover, the asymmetric effect is found significant in the stock return and most of the growth series of macroeconomic fundamentals. Results from the multivariate VAR model indicate that only short-term interest rate significantly influence the stock market volatility, while conditional stock return volatility is significant in explaining the volatility of industrial production, inflation, and treasury bill rate. Conclusion: The findings suggest an increasing interdependence between the money market and equity market as well as the macroeconomic fundamentals of Bangladesh.

The Impact of COVID-19, Day-of-the-Week Effect, and Information Flows on Bitcoin's Return and Volatility

  • LIU, Ying Sing;LEE, Liza
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.45-53
    • /
    • 2020
  • Past literatures have not studied the impact of real-world events or information on the return and volatility of virtual currencies, particularly on the COVID-19 event, day-of-the-week effect, daily high-low price spreads and information flow rate. The study uses the ARMA-GARCH model to capture Bitcoin's return and conditional volatility, and explores the impact of information flow rate on conditional volatility in the Bitcoin market based on the Mixture Distribution Hypothesis (Clark, 1973). There were 3,064 samples collected during the period from 1st of January 2012 to 20th April, 2020. Empirical results show that in the Bitcoin market, a daily high-low price spread has a significant inverse relationship for daily return, and information flow rate has a significant positive relationship for condition volatility. The study supports a significant negative relationship between information asymmetry and daily return, and there is a significant positive relationship between daily trading volume and condition volatility. When Bitcoin trades on Saturday & Sunday, there is a significant reverse relationship for conditional volatility and there exists a day-of-the-week volatility effect. Under the impact of COVID-19 event, Bitcoin's condition volatility has increased significantly, indicating the risk of price changes. Finally, the Bitcoin's return has no impact on COVID-19 events and holidays (Saturday & Sunday).

Lunar Effect on Stock Returns and Volatility: An Empirical Study of Islamic Countries

  • MOHAMED YOUSOP, Nur Liyana;WAN ZAKARIA, Wan Mohd Farid;AHMAD, Zuraidah;RAMDHAN, Nur'Asyiqin;MOHD HASAN ABDULLAH, Norhasniza;RUSGIANTO, Sulistya
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.533-542
    • /
    • 2021
  • The main objective of this article is to investigate the existence of the lunar effect during the full moon period (FM period) and the new moon period (NM period) on the selected Islamic stock market returns and volatilities. For this purpose, the Ordinary Least Squares model, Autoregressive Conditional Heteroscedasticity model, Generalised Autoregressive Conditional Heteroscedasticity model and Generalised Autoregressive Conditional Heteroscedasticity-in-Mean model are employed using the mean daily returns data between January 2010 and December 2019. Next, the log-likelihood, Akaike Information Criterion and Schwarz Information Criterion value are analyzed to determine the best models for explaining the returns and volatility of returns. The empirical results have deduced that, during the NM period, excluding Malaysia, the total mean daily returns for all of the selected countries have increased mean daily returns in contrast to the mean daily returns during the FM period. The volatility shocks are intense and conditional volatility is persistent in all countries. Subsequently, the volatility behavior tends to have lower volatility during the FM period and NM period in the Islamic stock market, except Malaysia. This article also concluded that the ARCH (1) model is the preferred model for stock returns whereas GARCH-M (1, 1) is preferred for the volatility of returns.

Analysis of ASEAN's Stock Returns and/or Volatility Distribution under the Impact of the Chinese EPU: Evidence Based on Conditional Kernel Density Approach

  • Mohib Ur Rahman;Irfan Ullah;Aurang Zeb
    • East Asian Economic Review
    • /
    • 제27권1호
    • /
    • pp.33-60
    • /
    • 2023
  • This paper analyzes the entire distribution of stock market returns/volatility in five emerging markets (ASEAN5) and figures out the conditional distribution of the CHI_EPU index. The aim is to examine the impact of CHI_EPU on the stock returns/volatility density of ASEAN5 markets. It also examined whether changes in CHI_EPU explain returns at higher or lower points (abnormal returns). This paper models the behaviour of stock returns from March 2011 to June 2018 using a non-parametric conditional density estimation approach. The results indicate that CHI_EPU diminishes stock returns and augments volatility in ASEAN5 markets, except for Malaysia, where it affects stock returns positively. The possible reason for this positive impact is that EPU is not the leading factor reducing Malaysian stock returns; but, other forces, such as dependency on other countries' stock markets and global factors, may have a positive impact on stock returns (Bachmann and Bayer, 2013). Thus, the risk of simultaneous investment in Chinese and ASEAN5 stock markets, except Malaysia, is high. Further, the degree of this influence intensifies at extreme high/low intervals (positive/negative tails). The findings of this study have significant implications for investors, policymakers, market agents, and analysts of ASEAN5.

방한 미국여행객의 국제 수요변동성 분석 (Estimating volatility of American tourist demand with a pleasure purpose in Korea inbound tourism market)

  • 김기홍
    • 통상정보연구
    • /
    • 제10권1호
    • /
    • pp.395-414
    • /
    • 2008
  • The objective of this study is to introduce the concepts and theories of conditional heteroscedastic volatility models and the news impact curves and apply them to the Korea inbound tourism market. Three volatility models were introduced and used to estimate the conditional volatility of monthly arrivals of inbound tourists into Korea and news impact curves according to the three models. Results of this study are as follows. As the proportion of American tourists occupied a large amount of Korea inbound tourism market, the markets' forecasting is very important. The news impact curves which used EGARCH model (1,1) and TGARCH model(1,1), with data on these tourists to Korea showed an asymmetry effect of volatility. It was common that bad news means that it was estimated more sensitively than good news. From these results, we will notice that American tourists who visited Korea only for tourism are affected by good news. The result suggests that the Korea government and tourism industry should pay more attention to changes in the tourism environment following bad news because conditional volatility increases more when a negative shock occurs than when a positive shock occurs.

  • PDF

국면전환 GARCH 모형을 이용한 코스피 변동성 분석 (Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model)

  • 허진영;성병찬
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.429-442
    • /
    • 2015
  • 변동성(volatility)은 투자위험을 의미하며 자산의 가격결정이나 포트폴리오 관리 및 투자전략에서 아주 중요한 역할을 한다. 이러한 변동성을 모형화하기 위한 조건부 이분산 모형으로서 전통적인 GARCH(generalized autoregressive conditional heteroskedastic) 모형 및 확장된 형태들이 널리 사용되어지고 있으나, 금융위기와 재정위기와 같은 구조적 변화를 변동성 예측에 반영할 수 없다는 단점을 가지고 있다. 본 논문에서는 이를 극복하기 위한 모형으로서 국면전환 GARCH(Markov regime switching GARCH) 모형을 소개하고, 한국의 일별 KOSPI 수익률에 적용하여 변동성 분석 및 예측을 실시하고, 기존의 GARCH 모형들과 비교하여 그 성능을 평가한다. 그 결과 표본 내(in-sample)의 변동성 적합도 측면에서 국면전환 GARCH 모형이 가장 우수한 성능을 보였으며, 표본 외(out-of-sample) 예측력 측면에서는 국면전환 GARCH 모형이 단기적 예측에서 좋지 않은 성능을 보였으나 장기적 예측에서 우수함을 보였다.

확률적 변동성 모형과 자기회귀이분산 모형의 비교분석 (Stochastic Volatility Model vs. GARCH Model : A Comparative Study)

  • 이용흔;김삼용;황선영
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.217-224
    • /
    • 2003
  • 시간의 경과에 따라 관측된 시계열 자료를 통해 데이터 분석을 하고 적당한 모형을 생성함으로써 미래 시점을 예측하는 방법들은 그 동안 많은 방법들이 제시되었고 연구 되고 있다. 그 중 최근 들어 과거의 데이터를 바탕으로 관측된 각 시점에서의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, Stochastic Volatility(SV))들이 옵션 가격분석이나 환율 변화 등 경제 시계열자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터(1995년 1월 3일부터 2001년 12월 28일, 총 1906일)를 바탕으로 (조건부) 우도함수 모수 추정 방법을 이용한 GARCH(1,1) 모형과, MCMC 방법을 이용하여 모수를 추정한 SV 모형을 적용시켜 보고 각 모형들의 예측 정확도를 비교하여 보았다.

A Study on Unfolding Asymmetric Volatility: A Case Study of National Stock Exchange in India

  • SAMINENI, Ravi Kumar;PUPPALA, Raja Babu;KULAPATHI, Syamsundar;MADAPATHI, Shiva Kumar
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.857-861
    • /
    • 2021
  • The study aims to find the asymmetric effect in National Stock Exchange in which the Nifty50 is considered as proxy for NSE. A return can be stated as the change in value of a security over a certain time period. Volatility is the rate of change in security value. It is an arithmetical assessment of the dispersion of yields of security prices. Stock prices are extremely unpredictable and make the investment in equities risky. Predicting volatility and modeling are the most profuse areas to explore. The current study describes the association between two variables, namely, stock yields and volatility in equity market in India. The volatility is measured by employing asymmetric GARCH technique, i.e., the EGARCH (1,1) tool, which was used in building the study. The closing prices of Nifty on day-to-day basis were used for analysis from the period 2011 to 2020 with 2,478 observations in the study. The model arrests the lopsided volatility during the mentioned period. The outcome of asymmetric GARCH model revealed the subsistence of leverage effect in the index and confirms the impact of conditional variance as well. Furthermore, the EGARCH technique was evidenced to be apt in seizure of unsymmetrical volatility.

다변량 고빈도 금융시계열의 변동성 분석 (Multivariate volatility for high-frequency financial series)

  • 이근주;황선영
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.169-180
    • /
    • 2017
  • 본 논문은 다변량 변동성을 다루고 있다. 최근 들어 활발하게 연구가 되고 있는 고빈도(high frequency)자료에 기초한 변동성 측정방법인 실현변동성을 계산하고 기존의 다변량 GARCH 모형과 비교분석하였다. 정준상관분석과 VaR분석을 이용하여 실현변동성과 다양한 다변량 GARCH 모형을 비교하였으며 최근 6년 동안의 삼성전자/현대차 거래 가격 고빈도 데이터를 이용하여 실증분석을 실시하였다.