• 제목/요약/키워드: conditional Marcinkiewicz-Zygmund inequalities

검색결과 2건 처리시간 0.014초

EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES TO CONDITIONAL CASES

  • Yuan, De-Mei;Li, Shun-Jing
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.431-445
    • /
    • 2015
  • Extensions of the Kolmogorov convergence criterion and the Marcinkiewicz-Zygmund inequalities from independent random variables to conditional independent ones are derived. As their applications, a conditional version of the Marcinkiewicz-Zygmund strong law of large numbers and a result on convergence in $L^p$ for conditionally independent and conditionally identically distributed random variables are established, respectively.

CONVERGENCE RATES FOR SEQUENCES OF CONDITIONALLY INDEPENDENT AND CONDITIONALLY IDENTICALLY DISTRIBUTED RANDOM VARIABLES

  • Yuan, De-Mei
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1275-1292
    • /
    • 2016
  • The Marcinkiewicz-Zygmund strong law of large numbers for conditionally independent and conditionally identically distributed random variables is an existing, but merely qualitative result. In this paper, for the more general cases where the conditional order of moment belongs to (0, ${\infty}$) instead of (0, 2), we derive results on convergence rates which are quantitative ones in the sense that they tell us how fast convergence is obtained. Furthermore, some conditional probability inequalities are of independent interest.