• 제목/요약/키워드: concrete-filled tubes

검색결과 181건 처리시간 0.024초

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect

  • Yu-A Kim;Ju-young Hwang;Jin-Kook Kim
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.461-474
    • /
    • 2023
  • Concrete-filled steel tubes are among the most efficient compressive structural members because the strength of the concrete is enhanced given that the surrounding steel tube confines the concrete laterally and the steel tube is restrained with regard to inward deformation due to the concrete existing inside. Accurate estimations of the ultimate compressive strength of CFT are important for efficient designs of CFT members. In this study, an analytical procedure that directly formulates the interaction between the concrete and steel tube by considering the nonlinear Poisson effect and stress-strain curve of the concrete including the confinement effect is proposed. The failure stress of concrete and von-Mises failure yield criterion of steel were used to consider multi-dimensional stresses. To verify the prediction capabilities of the proposed analytical procedure, 99 circular CFT experimental data instances from other studies were used for a comparison with AISC, Eurocode 4, and other researchers' predictions. From the comparison, it was revealed that the proposed procedure more accurately predicted the ultimate compressive strength of a circular CFT regardless of the range of the design variables, in this case the concrete compressive strength, yield strength of the steel tube and diameter relative to the thickness ratio of the tube.

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

SRC 합성교각의 비탄성거동에 대한 유한요소해석 (Finite Element Analysis of Inelastic Behavior of SRC Composite Piers)

  • 심창수;한정훈;박창규;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

용접조립 각형 CFT 단주의 구조특성에 관한 실험적 연구 (An Experimental Study on Structural Performance of Welded Built-up Square CFT Stub Columns)

  • 이성희;최영환;염경수;김진호;최성모
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.645-653
    • /
    • 2008
  • 용접조립 각형강관은 얇은 강판을 L형으로 절곡한 4개의 단위 부재를 플레어 용접으로 용접한 강관으로 용접조립 각형강관이 CFT 기둥으로 사용될 경우 콘크리트와 강관 폭의 중앙에 설치된 리브가 국부좌굴을 방지하는 역할을 하며 강관은 내부의 콘크리트의 구속하여 콘크리트의 구조내력을 향상시키는 역할을 한다. 본 연구에서는 용접조립 각형강관기둥의 제작방법을 소개하고 용접조립 각형강관과 용접조립 각형CFT 기둥 의 구조성능을 평가하기 위해 강관의 형상(용접조립 각형강관, 일반강관)과 폭두께비(B/t=50, 58, 67), 콘크리트의 강도(f'c=, 10MPa, 40MPa) 를 변수로 총 15개의 실대형 실험체를 제작하여 구조실험을 수행하였으며 용접조립 각형강관의 단면효율과 구조내력의 우수성을 확인하였다.

탄소섬유쉬트로 보강된 콘크리트충전 원형강관기둥의 연성능력 (Ductility Capacity for Concrete Filled Steel Circular Tubes Reinforced by Carbon Fiber Sheets(CFSs))

  • 박재우;홍영균;최성모
    • 한국강구조학회 논문집
    • /
    • 제22권2호
    • /
    • pp.185-195
    • /
    • 2010
  • 본 연구에서는 탄소섬유쉬트로 추가구속된 각형 CFT기둥 실험체의 단조압축실험을 수행하였고 이를 토대로 실험체의 연성능력을 평가하였다. 실험변수는 탄소섬유쉬트 보강겹수와 폭-두께비, 갭부착유무이며 실험변수에 따라 총 9개의 실험체를 제작하여 단조압축실험을 수행하였다. 실험을 통하여 각 실험체의 파괴거동, 하중-축변위 곡선, 최대내력, 변형성능을 비교한다. 탄소섬유쉬트의 추가구속은 기둥의 국부좌굴을 지연시켰으며 갭의 부착으로 탄소섬유쉬트의 구속분담시점을 지연시켜 연성능력은 상승한 것으로 나타났다.

The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme

  • Zand, Ahmed W. Al;Hosseinpour, Emad;Badaruzzaman, Wan Hamidon W.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.229-235
    • /
    • 2018
  • This study investigated the behaviour of the simply supported hollow steel tube (HST) beams, either concrete filled or unfilled when strengthened with carbon fibre reinforced polymer (CFRP) sheets. Eight specimens with varied tubes thickness (sections classification 1 and 3) were all tested experimentally under static flexural loading, four out of eight were filled with normal concrete (CFST beams). Particularly, the partial CFRP strengthening scheme was used, which wrapped the bottom-half of the beams cross-section (U-shaped wrapping), in order to use the efficiency of high tensile strength of CFRP sheets at the tension stress only of simply supported beams. In general, the results showed that the CFRP sheets significantly improved the ultimate strength and energy absorption capacities of the CFST beams with very limited improvement on the related HST beams. For example, the load and energy absorption capacities for the CFST beams (tube section class 1) were increased about 20% and 32.6%, respectively, when partially strengthened with two CFRP layers, and these improvements had increased more (62% and 38%) for the same CFST beams using tube class 3. However, these capacities recorded no much improvement on the related unfilled HST beams when the same CFRP strengthening scheme was adopted.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가 (Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification)

  • 박지웅;이두재;장성수;허종완
    • 복합신소재구조학회 논문집
    • /
    • 제3권3호
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.