• 제목/요약/키워드: concrete-filled tube

검색결과 500건 처리시간 0.021초

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

Experimental and numerical investigation on the behavior of concrete-filled rectangular steel tubes under bending

  • Zhang, Tao;Gong, Yong-zhi;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.231-253
    • /
    • 2021
  • Pure bending loading conditions are not frequently occurred in practical engineering, but the flexural researches are important since it's the basis of mechanical property researches under complex loading. Hence, the objective of this paper is to investigate the flexural behavior of concrete-filled rectangular steel tube (CFRT) through combined experimental and numerical studies. Flexural tests were conducted to investigate the mechanical performance of CFRT under bending. The load vs. deflection curves during the loading process was analyzed in detail. All the specimens behaved in a very ductile manner. Besides, based on the experimental result, the composite action between the steel tube and core concrete was studies and examined. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the computed results with experimental observations. The full curves analysis on the moment vs. curvature curves was further conducted, where the development of the stress and strain redistribution in the steel tube and core concrete was clarified comprehensively. It should be noted that there existed bond slip between the core concrete and steel tube during the loading process. And then, an extensive parametric study, including the steel strength, concrete strength, steel ratio and aspect ratio, was performed. Finally, design formula to calculate the ultimate moment and flexural stiffness of CFRTs were presented. The predicted results showed satisfactory agreement with the experimental and FE results. Additionally, the difference between the experimental/FE and predicted results using the related design codes were illustrated.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression

  • Huang, Yan-Sheng;Long, Yue-Ling;Cai, Jian
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.115-128
    • /
    • 2008
  • A method is proposed to estimate the ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression. The ultimate strength of concrete core is determined by using the conception of the effective lateral confining pressure and a failure criterion of concrete under true triaxial compression, which takes into account the difference between the lateral confining pressure provided by the broad faces of the steel tube and that provided by the narrow faces of the steel tube. The longitudinal steel strength of broad faces and that of the narrow faces of the steel tube are calculated respectively due to that buckling tends to occur earlier and more extensively on the broader faces. Finally, the proposed method is verified with experimental results. Corresponding values of ultimate strength calculated by ACI (2005), AISC (1999) and GJB4142-2000 are given respectively for comparison. It is found from comparison that the proposed method shows a good agreement with the experimental results.

콘크리트 충전형 압축부재의 단면특성에 따른 구속효과 평가 (Evaluation for Confined Effects by the Sectional Properties of Concrete Filled Steel Tube Columns)

  • 박국동;황원섭;김희주;전명일
    • 한국강구조학회 논문집
    • /
    • 제22권4호
    • /
    • pp.365-375
    • /
    • 2010
  • 콘크리트 충전형 합성부재는 압축하중 상태에서 강재에 의한 콘크리트의 구속효과와 콘크리트에 의한 강재의 국부좌굴에 대한 보강효과를 기대할 수 있는 압축부재이다. 기존의 연구결과를 실험결과와 비교한 후, 구속효과가 하중-변위 관계에 미치는 영향을 평가하여 기존의 응력-변형률 관계를 수정하였다. 수정된 응력-변형률 관계를 적용한 비선형 수치해석 프로그램을 작성하여 단면특성과 재료특성에 따른 각각의 설계 변수들이 하중-변위 관계와 모멘트-곡률 관계에 미치는 영향을 평가하였다.

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구 (Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application)

  • 윤영수;이승훈;성상래;백승준
    • 콘크리트학회지
    • /
    • 제8권2호
    • /
    • pp.151-161
    • /
    • 1996
  • 콘크리트 충전형 합성강관기둥의 현장실용화에 앞서 고강도측면과 초유동측면을 동시에 만족해야 하는 420 및 $560kg/cm^2$강도의 고강도-초유동 콘크리트의 최적배합비 도출을 위한 실내시험을 수행하고 그 결과를 바탕으로 레미콘공장에서의 콘크리트 생산에 다른 문제점 해결, 현장까지의 운반에 따른 경시변화등을 검토하기 위하여 실물크기의 강관기둥을 제작하여 현장실물모형시험을 실시하였다. 또한 현장적용시점이 동절기임을 고려하여 콘크리트의 경화지연에 대비한 연구의 필요성으로 인해 응결시간, 내부수화온도이력 및 초기강도의 발현정도에 관한 추가모형실험을 실시하여 현장적용에 적함한 고품질의 고강도-초유동 콘크리트를 얻고자 하였다.