• Title/Summary/Keyword: concrete-encased CFST column

Search Result 5, Processing Time 0.019 seconds

Evolution of concrete encased - CFST column: A comprehensive review on structural behavior and performance characteristics

  • Namitha Raveendran;Vasugi K
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.619-645
    • /
    • 2024
  • In the construction industry, composite structures have revolutionized traditional design principles, opening innovative possibilities. The Concrete Encased - Concrete Filled Steel Tubular (CE-CFST) column stands out as a distinctive composite structure, offering structural stability and resilience for various engineering applications. Comprising Reinforced Concrete (RC) and Concrete Filled Steel Tubular (CFST) components, CE-CFST columns are valued for their inherent properties, including ductility and rigidity, CE-CFST is commonly used in the construction of bridges, high-rise buildings, and more. This article aims to provide a concise overview of the evolutionary development of CE-CFST columns and their performance in structural applications. Through a comprehensive review, the study delves into the behaviour of CE-CFST columns under different scenarios. It examines the influences of key parameters such as size, infills, cross section, failure causes, and design codes on the performance of CE-CFST columns, highlighting their enhanced functionality and future potential. Moreover, the review meticulously examines previous applications of CE-CFST columns, offering insights into their practical implementation.

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns

  • Rong Su;Xian Li;Ziwei Li
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.781-794
    • /
    • 2023
  • In order to directly apply seawater and sea sand in construction without desalination, a type of square concrete-filled steel tube (CFST) encased with prefabricated seawater sea-sand concrete filled Polyvinyl Chloride (PVC)/Glass Fiber Reinforced Polymer (GFRP) tube column was proposed. Twenty short columns were tested under uniaxial loads, and the test parameters included inner tube types, seawater sea-sand concrete replacement ratios, concrete strength, the wrapping area of Carbon Fiber Reinforced Polymer (CFRP) strips and the thickness of GFRP tube. The effects of the parameters on failure modes, loading capacity, ductility and strain responses were discussed. All the tested specimens failed with serious buckling of the steel tubes and fracture of the inner tubes. The specimens had good residual bearing capacity corresponding to 64% to 88.9% of the peak capacity. The inner GFRP tubes and PVC tubes wrapped by CFRP strips provided stronger confinement to the core concrete, and were good choices for the proposed columns. Moreover, an analytical model for the composite column with different inner tube types was proposed.

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.