• Title/Summary/Keyword: concrete water tank

Search Result 62, Processing Time 0.023 seconds

The Effect on the Properties of High Flowing Concrete Using Low Heat Portland Cement by Material and Mixing Variations (저열 포틀랜드 시멘트를 사용한 고유동콘크리트의 사용재료 및 배합 변동에 따른 특성 평가)

  • 하재담;김태홍;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • Recently, concrete structures have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability, Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the effect on the properties of high flowing concrete using low heat portland cement by material and mixing variations. Variables for sensitivity test were selected items like finess modulus of aggregates, particle size of limestone powder, unit water, superplasticizer, viscosity agent and concrete temperature. The results of this study were be applied to slurry wall of #215 and #216 of underground LNG tank in Inchon.

  • PDF

Evaluation of Crack Monitoring Field Application of Self-healing Concrete Water Tank Using Image Processing Techniques (이미지 처리 기법을 이용한 자기치유 콘크리트 수조의 균열 모니터링 현장적용 평가)

  • Sang-Hyuk, Oh;Dae-Joong, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.593-599
    • /
    • 2022
  • In this study, a crack monitoring system capable of detecting cracks based on image processing techniques was developed to effectively check cracks, which are the main damage of concrete structures, and a program capable of imaging and analyzing cracks was developed using machine vision. This system provides objective and quantitative data by replacing the appearance inspection that checks cracks with the naked eye. The verification of the development system was applied to the construction site of a self-healing concrete water tank to monitor the crack and the amount of change in the crack width according to age. In the case of crack width detected by image analysis, the difference from the measured value using a digital microscope was up to 0.036 mm, and the crack healing effect of self-healing concrete could be confirmed through the reduction of crack width.

In-Situ Application of High-Strength Antiwashout Underwater Concrete

  • Moon Han-Young;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.283-291
    • /
    • 2004
  • Recently, the construction of underwater structures has been gradually increased, but underwater concrete got some problems of quality deterioration and water contamination around cast-in-situ of construction. In addition, massive underwater structures such as LNG tank, underwater concrete structures of large and continuous high- strength subterranean wall under water are being demanded lower heat of hydration. In this paper, the mechanical properties of high-strength antiwashout underwater concrete (HAWC) containing with two kinds of mineral admixtures respectively were investigated. On the basis of these results, the pH value and suspended solids of HAWC manufactured in the mock-up test were 10.0$\Box$11.0 and 51 mg/${\iota}$ at 30 minutes later, respectively, initial and final setting time were about 30,37 hours, and the slump flow was 530$\pm$20Tm. In the placement at a speed of $27 m^3/hr$, there was no large difference in flowing velocity with or without reinforcing bar, and flowing slope was maintained at horizontal level. Compressive strength and elastic modulus of the cored specimen somewhat decreased as flowing distance was far; however, those of central area showed the highest value.

Characteristics of Bond Strength as Types of Primer for the Facilities of Anti-corrosion Waterproofing Materials by the Reversed Pressure and Concrete Surface Condition (내부 방수⋅방식재의 프라이머 종류별 역수압 작용 및 콘크리트 표면 상태에 따른 부착강도 특성)

  • Oh, Sang-Keun;Heo, Neung-Hoe;Shin, Hong-Chul;Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • Recently, concrete facility as advanced water treatment facilities is extending in the water treatment facilities according to raise awareness of pure drinking water and delicious water. For this reason, it is increased to the necessity need to make the standard and the development of waterproofing and anti-corrosion materials for concrete structures applied water treatment tank. So, related research has become active recently. However, as the limit of research focused on durability improvement of top coating material, it is insufficient to study on the adhesion strength between the concrete surface and primer. Therefore, there is to confirm the adhesion of between concrete surface and the three primers used as anti-corrosion waterproofing materials, and to investigate the properties of adhesion strength according to the condition such as dry condition, wet condition, and water pressure condition of the concrete surface in this study.

A Study on the Mix Design of the Self-Compaction Concrete for the LNG Tank (LNG Tank용 자기충전 콘크리트의 배합설계에 관한 연구)

  • Kim, Dong-Seok;Park, Sang-Joon;Won, Cheol;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.135-138
    • /
    • 2003
  • The purpose of this study was to design the self-compaction concrete mixture, having not only high strength but also compensation of shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when 35% of limestone Powder, 6% CSA expansive additives are replaced at unit water 175kg/$\textrm{m}^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished.

A Study on the Mix Design of the Self-Compaction Concrete for the LNG Tank (LNG Tank용 자기충전 콘크리트의 배합설계에 관한 연구)

  • Kim, Dong-Seok;Park, Sang-Joon;Won, Cheol;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.85-88
    • /
    • 2004
  • The purpose of this study was to design the self-compaction concrete mixture, having not only high strength but also compensation of shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test. hydration heat analysis were performed. As a results, when 35% of limestone Powder, 6% CSA expansive additives are replaced at unit water 175kg/$\textrm{m}^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished.

An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank (지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 $m^3$, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected $100{\pm}25$ mm under the slope $20^{\circ}$ and $150{\pm}25$ mm over the slope $20^{\circ}$ s until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement is as followings. 1) Replacement ratio of limestone powder 25% by confined water ratio test 2) Water-cement ratio 57.8% 3) Sand-aggregate ratio 42.0%. Also, test results for the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

A study on the Development of Ground water by the Infiltration Gallery (집적암거에 의한 대류수개발에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3096-3106
    • /
    • 1973
  • As a link in the chain of antidrought measure, our attempt is made to obtain basic informations on the construction of an infiltration gallary which can be supplied with irrigation water by catching of underground water in small river beds, which is economical, permanent and efficient. The experiment was made, concerning the structure of catchment conduits, by constructing a model sand tank $1.5m{\times}5m{\times}1.5m$ in dimension made of reinforced concrete. Various kinds of measuring equipment were attached to the model tank which contains a set of catchment conduits, each of them was made 30cm in diameter and 60cm in length with the ratio of sectional area to total area of influx holes 10:1, 20:1, 30:1. The average size of influx holes was fixed from 0mm to 10mm, 20mm and 30mm in diameter respectively. Obtained results are as follow; (a) In view of the water catchment capacity, manufacturing cost and the antipressure strength of the catchment conduits, it is the best method to decide the total number of influx holes 20 per sq. meter of each tile surface, and the size of influx holes 20mm in diameter, when the conduits have diameter less than 1m. (b) The greatest factor of safety against external load is to arrange the influx holes in a zigzag manner on the tile surface. The most effective formula of arrangement is $S{\geqq}\sqrt{2gd}$ where: s : spacing of opening row. g : spacing of opening line. d : diameter of influs hole.

  • PDF

A Study on Waterproofing and Anticorrosive Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (초속경화(初速硬化) 폴리우레아수지 도막방수재(途膜防水材)의 방수(防水)·방식(防蝕) 성능평가(性能評價)에 관한 연구(硏究))

  • Cho, Chan-Haeng;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.91-95
    • /
    • 2003
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing and anticorrosive work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance, the imprint of seal performance, temperature dependence performance, promotion weatherizing ability, inner chemical performance, drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.

  • PDF

A Study on Waterproofing Performance Evaluation of Polyurea Resin Waterproofing Membrane Coating of Velocity per Second Hardening (뿜칠형 초속경화 폴리우레아수지 도막방수재의 성능평가에 관한 연구)

  • Oh, Sang-Keun;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • There is a problem to be solved for improvement of durability and safety supervision. When you do the waterproofing work of main concrete from the design stage, the material and method of construction need to be correctly applied to appropriate circumstance conditions. Epoxy have mostly been used for concrete water tank structure. Lately, lots of subjects on adaption of polyurea resin waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with another waterproofs in this study. Performance evaluation items include the adherence performance, the imprint of seal performance, temperature dependence performance, promotion weatherizing ability, Inner chemical performance. drinking water eruptive performance. Through the experiment analysis, we found that the polyurea resin waterproofing membrane is dominantly superior to other waterproofs. According to this study, we suggest the polyurea resin waterproofing membrane as a new waterproofing material for concrete structure.