• 제목/요약/키워드: concrete systems

검색결과 1,506건 처리시간 0.02초

콘크리트 구조물의 철근 방식성능 실험평가 (An Evaluation of Corrosion Protective Systems for Reinforcing Steel in Concrete)

  • 허준;홍기섭;오승모;장지원;최응규;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.275-280
    • /
    • 1997
  • An experimental study to evaluate corrosion protection systems was undertaken with 47 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring marcrocell corrosion currents, which are generally accepted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl an exposed to a 10 percent of NaCl show high values of corrosion currents. For the specimens with water repellent membrane currents kept relatively low numerical values, while test specimens with surface corrosion inhibitor hyprotective systems show high values of corrosion currents. No clear indication of the corrosion inhibitor protective systems might be due to the extremely high chloride exposure of the specimens, which has brought the accelerated corrosion. It would be expected that evaluation of the corrosion protective systems need long-term measurement with specimen exposed les chloride but simulating the real condition.

  • PDF

염화물 침투 콘크리트의 균열 특성에 따른 철근 부식에 관한 연구 (Rapid Corrosion Test on Reinforcing Steels in Chlordie-Penetrating Structures with Various Crack Patterns)

  • 류금성;유환구;김국환;이상국;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.718-723
    • /
    • 2000
  • Reinforced concrete is in general, known as high durability construction material under normal environments due to strong alkalinity of cement. It is, however, well known that moderate or minor cracks in reinforced concrete should be most serious causes to deteriorate the durability of RC structures. Futhermore, chloride contents penetrating through unexpected cracks in reinforced concrete bridges get to weaken corrosion resistance of reinforcement steel in concrete and then to accelerate the deterioration of concrete durability. The objective of this experimental research is 1) to evaluate the effect of various corrosion protection systems for reinforced concrete specimens with moderate or minor cracks which are exposed to cyclic wet and dry seawater, and then 2) to develop effective corrosion protection systems for reinforced concrete bridges under the exposure of various detrimental environments such as seawater, deicing and etc.

  • PDF

Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In order to reduce the residual drift of a structure in structural engineering field, a combined structural system (dual) consisting of steel buckling-restrained braced frame (BRBF) along with shear wall is proposed. In this paper, BRBFs are used with special reinforced concrete shear walls as combined systems. Some prototype models of the proposed combined systems as well as steel BRBF-only systems (without walls) are designed according to the code recommendations. Then, the nonlinear model of the systems is prepared using fiber elements for the reinforced concrete wall and appropriate elements for the BRBs. Seismic responses of the combined systems subjected to ground motions at maximum considered earthquake level are investigated and compared to those obtained from BRBFs. Results showed that the maximum residual inter-story drift from the combined systems is, on average, less than half of the corresponding value of the BRBFs. In this research, mean of absolute values of the maximum inter-story drift ratio demand obtained from combined systems is less than the 3% limitation, while this criterion has not been fulfilled by BRBF systems.

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.

Residual drift analyses of realistic self-centering concrete wall systems

  • Henry, Richard S.;Sritharan, Sri;Ingham, Jason M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.409-428
    • /
    • 2016
  • To realise the full benefits of a self-centering seismic resilient system, the designer must ensure that the entire structure does indeed re-center following an earthquake. The idealised flag-shaped hysteresis response that is often used to define the cyclic behaviour of self-centering concrete systems seldom exists and the residual drift of a building subjected to an earthquake is dependent on the realistic cyclic hysteresis response as well as the dynamic loading history. Current methods that are used to ensure that re-centering is achieved during the design of self-centering concrete systems are presented, and a series of cyclic analyses are used to demonstrate the flaws in these current procedures, even when idealised hysteresis models were used. Furthermore, results are presented for 350 time-history analyses that were performed to investigate the expected residual drift of an example self-centering concrete wall system during an earthquake. Based upon the results of these time-history analyses it was concluded that due to dynamic shake-down the residual drifts at the conclusion of the ground motion were significantly less than the maximum possible residual drifts that were observed from the cyclic hysteresis response, and were below acceptable residual drift performance limits established for seismic resilient structures. To estimate the effect of the dynamic shakedown, a residual drift ratio was defined that can be implemented during the design process to ensure that residual drift performance targets are achieved for self-centering concrete wall systems.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Effects of concrete strength on structural behavior of holed-incrementally prestressed concrete (H-IPC) girder

  • Han, Man Yop;Kim, Sung Bo;Kang, Tae Heon
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.113-126
    • /
    • 2015
  • Holed-Incrementally Prestressed Concrete (H-IPC) girders are designed using the following new design concepts. At first, web openings reduce the self-weight of the girder, and also diffuse prestressing tendon anchorages. The reduced end anchoring forces decrease the web thickness of the end sections. Additionally, precast technology help to improve the quality of concrete and to reduce the construction period at the site. For experimentally verification, two 50 m full-scale H-IPC girders are manufactured with different concrete strength of 55 MPa and 80 MPa. The safety, stiffness, ductility, serviceability and crack development of H-IPC girder are measured and compared with each other for different strengths. Both girders show enough strength to carry live load and good stiffness to satisfy the design criteria. The experimental result shows the advantages of using high strength concrete and adopting precast girder. The test data can be used as a criterion for safety control and maintenance of the H-IPC girder.

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Composite Strips with Various Anchor Systems for Retrofitting Concrete Beams

  • Yoshitake, Isamu;Yumikura, Keiyu;Mimura, Yoichi;Kim, Yail-J.
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.43-48
    • /
    • 2011
  • This paper presents the performance of anchor systems for reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) strips. Nine simply-supported beams are tested with various anchor systems such as steel hooks, steel plates with anchor bolts, CFRP anchor plates, and near-surface mounted (NSM) CFRP strip. The effects of these anchors on the behavior of the retrofitted beams are discussed, including load-carrying capacity, failure modes, and ductility characteristics. Test results indicate that end-anchorage is an important parameter when a CFRP-retrofit design is conducted. Mechanical bolts and NSM CRFP anchors are recommended.