• Title/Summary/Keyword: concrete stress block

Search Result 94, Processing Time 0.027 seconds

Concrete Mixture and Thermal Stress of Preventing Thermal Cracking by Hydration Heat in Mass Concrete Structure (수화열에 의한 온도균열 방지를 위한 매스콘크리트 구조물의 콘크리트 배합과 온도응력 제어방안)

  • 홍성헌;김욱종;김효락
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1163-1168
    • /
    • 2000
  • The method for preventing thermal cracks is necessary in mass concrete structures. So various experiments were carried out for the controls of thermal cracks and we substituted fly ash for a quarter of cement quantity in order to decrease hydration heat. The maximum block size is determined by numerical analysis as well. Hydration heat and thermal stress were measured through various gauges and analysis considering the steps of concrete placement were carried out. It was found from this study that the appropriate block size was able to be determined properly by numerical analysis.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

Tests on Transfer Bond Performance of Epoxy Coated Prestressing Strands (에폭시 코팅 처리된 PS강선의 정착부착성능 실험)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.89-100
    • /
    • 1994
  • The current test procedure for transfer length, which determine transfer length by measuring concrete strain, has an actual bond stress state in the prestressed pretensioned member : however, it is difficult to determine the bond properties of maximum bond stress and bond stiffness with this method. It is also difficult for design engineer to understand and select a correct safety criterion from the widely distributed results of such a ransfer test alone. An alternative testing procedure is provided here to determine the bond properties without measuring the concrete strain. In this test the bond stress is measured directly by creating a similar boundary condition within the transfer length in a real beam during the transfer of prestressing force. The prestressing force was released step by step by step from the unloading side. The release of force induces a swelling of the strand at the unloading side of concrete block, bonding force in the block, and a bond slip of the strand toward the other side of the block. Two center-hole load cells are used to record the end loads until the point of general bond slip(maximum bond stress). It is suggested that this test procedure be performed with the ordinary transfer test when determining the transfer length in a prestressed, pretensioned concrete beam.

Modified Rectangular Stress Block for High Strength RC Columns to Axial Loads with Bidirectional Eccentricities (2축 편심 축력을 받는 고강도 콘크리트 기둥의 수정 등가응력블럭)

  • Yoo, Suk-Hyeong;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.335-343
    • /
    • 2003
  • In the previous experimental study, it is verified that the ultimate strain of concrete (${\varepsilon}$$_{cu}$=0.003) and coefficient of equivalent stress block (${\beta}$$_1$) can be used for the analysis of RC beams under biaxial and uniaxial bending moment. However, the characteristics of stress distribution of non rectangular compressed area in the RC columns are different to those of rectangular compressed area. The properties of compressive stress distribution of concrete have minor effect on the pure bending moment such as beams, but for the columns subjected to combined axial load and biaxial bending moment, the properties of compressive stress distribution are influencing factors. Nevertheless, in ACI 318-99 code, the design tables for columns subjected to axial loads with bidirectional eccentricities are based on the parameters recommended for rectangular stress block(RSB) of rectangular compressed areas. In this study the characteristics of stress distribution through both angle and depth of neutral axis are observed and formulated rationally. And the modified parameters of rectangular stress block(MRSB) for non rectangular compressed area is proposed. And the computer program using MRSB for the biaxial bending analysis of RC columns is developed and the results of MRSB are compared to RSB and experimental results respectively.

A Proposal of the Compressive Stress Distribution Model of Ultra High-Strength Concrete (초고강도 콘크리트에 적합한 응력분포 모델의 제안)

  • 박훈규;윤영수;한상묵;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.436-441
    • /
    • 1997
  • This paper presents the compressive stress distribution model appropriate to predict the ultimate strength of structural elements using ultra high-strength concrete. From the results of this investigation, the following conclusions are drawn: 1. The constant value of strain at extreme concrete compression fiber of 0.0027 is seen to represent satisfactorily the experimental result for ultra high-strength concrete. 2. The current ACI-318 rectangular stress block parameters were found to overestimate the moment capacity of ultra high-strength concrete columns with eccentrically loaded. 3. The equivalent trapezoidal stress distribution model with new parameter $\lambda_1$ and $\lambda_2$ was developed.

  • PDF

초고강도 콘크리트의 재료특성 및 휨 거동에 관한 실험적 연구

  • 장일영;이호범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.107-112
    • /
    • 1991
  • The object of this study is to investigate material characteristics and flexural behavior of high strength concrete. Principal causes of variations of high compressive strength include the strength-producing capabilities of cement and silica hume. Compressive strength of 1200 kgf/$\textrm{cm}^2$ is introduced for identifying the effect of the variation of the size of porocity and alternative method of measurement, Acoustic Emition method, is applied to examine the phenominon of concrete failure. The main test variables in the beam element are tensile steel ratios, presence of shear reinforcement, and change of steel shape. The estimation of stress block in the flexural test of this element tends to support the present theory and may suggest a desirable shape of the stress block.

  • PDF

Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • 김성도;김성수
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

Thermal Crack Control of Massive Foundation Mat of Office-tel Using Thermal Analysis (오피스텔 대형 기초매트의 온도해석을 통한 온도균열제어)

  • 김태홍;하재담;김동석;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1181-1186
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as biers, thick walls, box type walls, mat-slab of nuclear reactor buildings, dams or foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which considers steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis considering season. Secondly it shows the application of the cracks control technique like block placement.

Analysis Study for the Determination of Optimized Block Size in Mass Concrete (매스콘크리트에서 최적의 타설 단면 결정을 위한 해석적 연구)

  • 김진근;김상철;이두재;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.422-429
    • /
    • 1997
  • Thermal stress induced by hydration heat may produce cracks in mass concrete structure, which can result in structural problems as well as bad appearance. To minimize crack occurrence in massive structural, thus, the study put an emphasis on the determination of optimized lift height and block size. In the parametric study different sizes and lift heights were used to measure the magnitudes of hydration heat and thermal stresses for 3 different types of concrete fabricated with 1 pure cement and 2 blended Portland cements. As a result of analysis. it was found that magnitude of hydration heat and the occurrence of thermal cracks depend on the restriction conditions and material characteristics, especially adiabatic material parameters. It was also found that optimized lift height and block size can be determined from an appropriate combination of the degree of inner and outer structural restrictions.

  • PDF

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.